The significance of bed collapse experiments in the characterization of fluidized beds of fine powders

1988 ◽  
Vol 43 (11) ◽  
pp. 3037-3047 ◽  
Author(s):  
G.F. Barreto ◽  
G.D. Mazza ◽  
J.G. Yates
2008 ◽  
Vol 31 (9) ◽  
pp. 1336-1341 ◽  
Author(s):  
J. M. Whitcombe ◽  
R. D. Braddock ◽  
I. E. Agranovski
Keyword(s):  

1991 ◽  
Vol 4 (11) ◽  
pp. 591-594 ◽  
Author(s):  
T Tachiwaki ◽  
Y Kimura ◽  
T Ito ◽  
A Hiraki
Keyword(s):  

Author(s):  
R. Solimene ◽  
R. Chirone ◽  
A. Marzocchella ◽  
P. Salatino

The characterization of volatile matter (VM) emission from solid fuel particles during fluidized bed combustion/gasification is relevant to reactor performance influencing the fate of VM as it results from competing phenomena of release, mixing/segregation and burn-out. The rate and the time-history of volatile matter release strongly affect axial segregation of fuel particles in the bed, favoring the establishment of the stratified combustion regime. On the other hand, the comparison between the devolatilization and radial solids mixing time scales affects the radial distribution of volatile matter across the reactor. Short devolatilization times determine VM release localized near feeding point. The knowledge of devolatilization kinetics, as determined by thermogravimetric analysis, does not take into account key process phenomena such as the effective time-temperature history of the devolatilizing particle. A novel and easy-to-use diagnostic technique for “in-situ” characterization of the devolatilization rate of fuel particles in gas fluidized beds is proposed in the present paper. It is based on the time-resolved measurement of pressure in a bench scale fluidized bed reactor equipped with a calibrated flow restriction at the exhaust. The procedure consists of the injection of a single fuel particle (or small batches of multiple particles) and continuous monitoring of the pressure in the reactor. The bed was kept at a constant temperature by external heating and fluidized with nitrogen. Gas pressure inside the reactor increases during devolatilization as a consequence of the increased flow rate, due to the emission of volatile matter, across the calibrated flow restriction at the exhaust. Experimental data are analyzed in the light of a model of the experiment based on the transient mass balance on the reactor volume referred to the fluidizing gas and to the volatile matter. The comparison between experimental pressure time series and model computations enables the characterization of the kinetic parameters of devolatilization rate for samples of different coals as well as of non-fossil solid fuels.


AIChE Journal ◽  
1985 ◽  
Vol 31 (6) ◽  
pp. 1019-1028 ◽  
Author(s):  
A. W. Weimer ◽  
G. J. Quarderer

2014 ◽  
Vol 631 ◽  
pp. 137-142 ◽  
Author(s):  
F.N. Oktar ◽  
H. Gokce ◽  
O. Gunduz ◽  
Y.M. Sahin ◽  
D. Agaogullari ◽  
...  

In this study the structural and chemical properties of barnacle shell based bioceramic materials (i.e. hydroxyapatite, whitlockite, monetite and other phases) were produced by using mechano-chemical (hot-plate) conversion method. Cleaned barnacle shells were ball milled down to <75µm in diameter. Differential thermal and gravimetric analyses (DTA/TGA) were performed to determine the exact CaCO3 content. Sample batches of 2g were prepared from the fine powders produced. For each batch, the required volume of an aqueous H3PO4 solution was calculated in order to set the stoichiometric molar ratio of Ca/P equal to 1.5 for ß-tricalcium phosphate (ß-TCP) or to 1.667 for hydroxyapatite (HA). The temperature was set to 80°C for 15 minutes to complete the process. After the titration of the equivalent amount of H3PO4 into the prepared solution, agitation was carried out on a hot-plate (i.e. mechano-chemical processing) for 8 hours. The sediments formed were dried and the resulting TCP and HA powders were calcined at 400°C and 800°C respectively. For complete characterization of the bioceramics produced, scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) analyses were carried out. The current study proposes a simple, economic and time efficient method for nano-bioceramic production.


Sign in / Sign up

Export Citation Format

Share Document