Gas-phase dispersion assessed from tracer holdup measurements on a packed bed: theory, apparatus and experimental test (or how to measure dispersion with a pressure gauge)

1994 ◽  
Vol 49 (4) ◽  
pp. 561-572 ◽  
Author(s):  
P.A. Addison ◽  
B.A. Buffham ◽  
G. Mason ◽  
G.D. Yadav
1991 ◽  
Vol 24 (7) ◽  
pp. 277-284 ◽  
Author(s):  
E. Gomólka ◽  
B. Gomólka

Whenever possible, neutralization of alkaline wastewater should involve low-cost acid. It is conventional to make use of carbonic acid produced via the reaction of carbon dioxide (contained in flue gases) with water according to the following equation: Carbon dioxide content in the flue gas stream varies from 10% to 15%. The flue gas stream may either be passed to the wastewater contained in the recarbonizers, or. enter the scrubbers (which are continually sprayed with wastewater) from the bottom in oountercurrent. The reactors, in which recarbonation occurs, have the ability to expand the contact surface between gaseous and liquid phase. This can be achieved by gas phase dispersion in the liquid phase (bubbling), by liquid phase dispersion in the gas phase (spraying), or by bubbling and spraying, and mixing. These concurrent operations are carried out during motion of the disk aerator (which is a patent claim). The authors describe the functioning of the disk aerator, the composition of the wastewater produced during wet gasification of carbide, the chemistry of recarbonation and decarbonation, and the concept of applying the disk aerator so as to make the wastewater fit for reuse (after suitable neutralization) as feeding water in acetylene generators.


1986 ◽  
Vol 51 (6) ◽  
pp. 1222-1239 ◽  
Author(s):  
Pavel Moravec ◽  
Vladimír Staněk

Expression have been derived in the paper for all four possible transfer functions between the inlet and the outlet gas and liquid steams under the counter-current absorption of a poorly soluble gas in a packed bed column. The transfer functions have been derived for the axially dispersed model with stagnant zone in the liquid phase and the axially dispersed model for the gas phase with interfacial transport of a gaseous component (PDE - AD). calculations with practical values of parameters suggest that only two of these transfer functions are applicable for experimental data evaluation.


1980 ◽  
Vol 45 (1) ◽  
pp. 214-221
Author(s):  
Jan Červenka ◽  
Mirko Endršt ◽  
Václav Kolář

Gas phase back mixing has been measured in a column packed with vertical expanded metal sheet under the counter-current flow of gas and liquid by the static method using a tracer. The observed experimental concentration profiles has not confirmed our earlier proposed model of back mixing, based on the concentration profiles in absorption runs. These profiles do not even conform with the axially dispersed plug flow model currently used to describe axial mixing in packed bed columns. The concentration profiles may be described by a combination of the axially dispersed plug flow model with back flow.


Author(s):  
Andrey A. Troshko ◽  
Ajey Y. Walavalkar

Computational Fluid Dynamics in conjunction with an Eulerian multiphase model of heat transfer in a Pebble Bed Modular Reactor (PBMR) was validated against experimental data obtained in a test rig. The cooling gas and packed fuel pebbles constituted two phases. The velocity of pebble phase was fixed to zero and a drag law accounting for a packed bed condition was used. The density of the gas phase varied with temperature. Volume averaged effective thermal conductivities accounting for radiation and packed spheres geometry were used for both phases. Model predictions compared favorably with the experiment for two gases — helium and nitrogen and two power levels. It was found that accounting for increased affective porosity close to walls results in more realistic velocity field prediction.


2007 ◽  
Vol 133 (1-3) ◽  
pp. 317-323 ◽  
Author(s):  
A.O. Ibhadon ◽  
I.M. Arabatzis ◽  
P. Falaras ◽  
D. Tsoukleris

Sign in / Sign up

Export Citation Format

Share Document