packed bed bioreactor
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 38)

H-INDEX

35
(FIVE YEARS 5)

Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 706
Author(s):  
Anna Offersgaard ◽  
Carlos Rene Duarte Hernandez ◽  
Anne Finne Pihl ◽  
Rui Costa ◽  
Nandini Prabhakar Venkatesan ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has demonstrated the value of pursuing different vaccine strategies. Vaccines based on whole viruses, a widely used vaccine technology, depend on efficient virus production. This study aimed to establish SARS-CoV-2 production in the scalable packed-bed CelCradleTM 500-AP bioreactor. CelCradleTM 500-AP bottles with 0.5 L working volume and 5.5 g BioNOC™ II carriers were seeded with 1.5 × 108 Vero (WHO) cells, approved for vaccine production, in animal component-free medium and infected at a multiplicity of infection of 0.006 at a total cell number of 2.2–2.5 × 109 cells/bottle seven days post cell seeding. Among several tested conditions, two harvests per day and a virus production temperature of 33 °C resulted in the highest virus yield with a peak SARS-CoV-2 infectivity titer of 7.3 log10 50% tissue culture infectious dose (TCID50)/mL at 72 h post-infection. Six harvests had titers of ≥6.5 log10 TCID50/mL, and a total of 10.5 log10 TCID50 were produced in ~5 L. While trypsin was reported to enhance virus spread in cell culture, addition of 0.5% recombinant trypsin after infection did not improve virus yields. Overall, we demonstrated successful animal component-free production of SARS-CoV-2 in well-characterized Vero (WHO) cells in a scalable packed-bed bioreactor.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Swati Sambita Mohanty ◽  
Arvind Kumar

AbstractThe current study describes the aerobic biodegradation of Indanthrene Blue RS dye by a microbial consortium immobilized on corn-cob biochar in a continuous up-flow packed bed bioreactor. The adsorption experiments were performed without microbes to monitor the adsorption effects on initial dye decolorization efficiency. The batch experiments were carried out to estimate the process parameters, and the optimal values of pH, temperature, and inoculum volume were identified as 10.0, 30 °C, and 3.0 × 106 CFU mL−1, respectively. During the continuous operation, the effect of flow rate, initial substrate concentration, inlet loading rate of Indanthrene Blue RS on the elimination capacity, and its removal efficiency in the bioreactor was studied. The continuous up-flow packed bed bioreactor was performed at different flow rates (0.25 to 1.25 L h−1) under the optimal parameters. The maximum removal efficiency of 90% was observed, with the loading rate varying between 100 and 300 mg L−1 day−1. The up-flow packed bed bioreactor used for this study was extremely useful in eliminating Indanthrene Blue RS dye using both the biosorption and biodegradation process. Therefore, it is a potential treatment strategy for detoxifying textile wastewater containing anthraquinone-based dyes.


2021 ◽  
Author(s):  
Tomas Hessler ◽  
Susan T.L. Harrison ◽  
Jillian F. Banfield ◽  
Robert J. Huddy

Biological sulfate reduction (BSR) represents a promising bioremediation strategy, yet the impact of metabolic interactions on performance has been largely unexplored. Here, genome-resolved metagenomics was used to characterise 17 microbial communities associated with reactors operated with defined sulfate-contaminated solutions. Pairs of reactors were supplemented with lactate or with acetate plus a small amount of fermentable substrate. At least thirty draft quality genomes, representing all the abundant bacteria, were recovered from each metagenome. All of the 22 SRB genomes encode genes for H2 consumption. And of the total 163 genomes recovered, 130 encode 321 NiFe and FeFe hydrogenases. The lactate-supplemented packed-bed bioreactor was particularly interesting as it resulted in stratified microbial communities that were distinct in their predominant metabolisms. Pathways for fermentation of lactate and hydrogen production were enriched towards the inlet whereas increased autotrophy and acetate-oxidizing SRB were evident towards the end of the flow path. We hypothesized that high sulfate removal towards the end of the flow path, despite acetate being an electron donor that typically sustains low SRB growth rates, was stimulated by H2 consumption. This hypothesis was supported by sustained performance of the predominantly acetate-supplemented stirred-tank reactor, which was dominated by diverse fermentative, hydrogen-evolving bacteria and low-abundance SRB capable of acetate and hydrogen consumption. We conclude that the performance of BSR reactors supplemented with inexpensive acetate can be improved by the addition of a low concentration of fermentable material due to stimulation of syntrophic relationships among hydrogen-producing non-SRB and dual hydrogen- and acetate-utilising SRB.


2021 ◽  
Author(s):  
Swati Sambita Mohanty ◽  
Arvind Kumar

Abstract The current study describes the aerobic biodegradation of Indanthrene Blue RS dye by a microbial consortium immobilized on corn-cob biochar in a continuous up-flow packed bed bioreactor. The adsorption experiments were performed without microbes to monitor the adsorption effects on initial dye decolorization efficiency. The batch experiments were carried out to estimate the process parameters, and the optimal values of pH, temperature, and inoculum volume were identified to be 10.0, 30 ºC, and 3.0 × 106 CFU mL-1, respectively. During the continuous operation, the effect of flow rate, initial substrate concentration, inlet loading rate of Indanthrene Blue RS on the elimination capacity, and its removal efficiency in the bioreactor was studied. The continuous up-flow packed bed bioreactor was performed at different flow rates (0.25 to 1.25 L h-1) under the optimal parameters. The maximum removal efficiency of 90% was observed, with the loading rate varying between 100 to 300 mg L-1 d-1. The up-flow packed bed bioreactor used for this study was extremely useful in eliminating Indanthrene Blue RS dye using both the biosorption and biodegradation process. Therefore, it is a potential treatment strategy for detoxifying textile wastewater containing anthraquinone based dyes.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 743
Author(s):  
Marcela Levio-Raiman ◽  
Gabriela Briceño ◽  
Bárbara Leiva ◽  
Sebastián López ◽  
Heidi Schalchli ◽  
...  

This study provides the basis for implementing a continuous treatment system for wastewater containing a pesticide mixture formed by atrazine, iprodione, and chlorpyrifos. Two fungal strains (Verticilium sp. H5 and Metacordyceps sp. H12) isolated from a biomixture of a biopurification system were able to remove different pesticide concentrations (10 to 50 mg L−1) efficiently from the liquid medium; however, the half-life of the pesticides was reduced and characterized by a T1/2 of 5.4 to 9.2 d for atrazine, 3.7 to 5.8 d for iprodione, and 2.6 to 2.9 d for chlorpyrifos using the fungal consortium. The immobilization of the fungal consortium in alginate bead was effective, with the highest pesticide removal observed using an inoculum concentration of 30% wv−1. The packed-bed reactor with the immobilized fungal consortium, which was operated in the continuous mode at different flow rates (30, 60, and 90 mL h−1), required approximately 10 d to achieve removal efficiency (atrazine: 59%; iprodione: 96%; chlorpyrifos: ~85%). The bioreactor was sensitive to flow rate fluctuations but was able to recover performance quickly. The pesticide metabolites hydroxyatrazine, 3,5-dichloroaniline, and 3,5,6-trichloro-2-pyridinol were produced, and a slight accumulation of 3,5,6-trichloro-2-pyridinol was observed. Nevertheless, reactor removal efficiency was maintained until the study ended (60 d).


2021 ◽  
Vol 20 (2) ◽  
pp. 761-773
Author(s):  
E. Houbron ◽  
◽  
E. Cruz-Carmona ◽  
A. Ponciano-Rosas ◽  
E. Rustrián-Portilla ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elahe Azizi ◽  
Fariba Abbasi ◽  
Mohammad Ali Baghapour ◽  
Mohammad Reza Shirdareh ◽  
Mohammad Reza Shooshtarian

Abstract4-chlorophenol (4-CP) is a hazardous contaminant that is hardly removed by some technologies. This study investigated the biodegradation, and physical 4-CP removal by a mixed microbial consortium in the Airlift packed bed bioreactor (ALPBB) and modeling by an artificial neural network (ANN) for first the time. The removal efficiency of ALPBB was investigated at 4-CP(1-1000 mg/L) and hydraulic retention time (HRT)(6-96 hr) by HPLC. The results showed that removal efficiency decreased from 85 at 1 to 0.03% at 1000 mg/L, with increasing 4-CP concentration and HRT decreasing. BOD5/COD increased with increasing exposure time and concentration decreasing, from 0.05 at 1000 to 0.96 at 1 mg/L. With time increasing, the correlation between COD and 4-CP removal increased (R2 = 0.5, HRT = 96 h). There was a positive correlation between the removal of 4-CP and SCOD by curve fitting was R2 = 0.93 and 0.96, respectively. Moreover, the kinetics of 4-CP removal follows the first-order and pseudo-first-order equation at 1 mg/L and other concentrations, respectively. 4-CP removal modeling has shown that the 2:3:1 and 2:4:1 were the best structures (MSE: physical = 0.126 and biological = 0.9)(R2allphysical = 0.999 and R2testphysical = 0.999) and (R2allbiological = 0.71, and R2testbiological = 0.997) for 4-CP removal. Also, the output obtained by the ANN prediction of 4-CP was correlated to the actual data (R2physical = 0.9997 and R2biological = 0.59). Based on the results, ALPBB with up-flow submerged aeration is a suitable option for the lower concentration of 4-CP, but it had less efficiency at high concentrations. So, physical removal of 4-CP was predominant in biological treatment. Therefore, the modification of this reactor for 4-CP removal is suggested at high concentrations.


Sign in / Sign up

Export Citation Format

Share Document