Tracer diffusion of small ions in a salt-free polyelectrolyte solution

1980 ◽  
Vol 76 (1) ◽  
pp. 143-148
Author(s):  
Nobuo Yoshida
2021 ◽  
Vol 23 (10) ◽  
pp. 5992-5998
Author(s):  
Daniel Uxa ◽  
Helen J. Holmes ◽  
Kevin Meyer ◽  
Lars Dörrer ◽  
Harald Schmidt

Lithium tracer diffusivities in LiNi0.33Mn0.33Co0.33O2 cathode material for lithium-ion batteries follows the Arrhenius law with an activation energy of 0.85 eV.


2014 ◽  
Vol 125 ◽  
pp. 373-393 ◽  
Author(s):  
Thomas Gimmi ◽  
Olivier X. Leupin ◽  
Jost Eikenberg ◽  
Martin A. Glaus ◽  
Luc R. Van Loon ◽  
...  

1994 ◽  
Vol 369 ◽  
Author(s):  
Sanjeev Aggarwal ◽  
Rudiger Dieckmann

AbstractCation diffusion in the spinel solid solution (Fe1-xTix)3-δO4 (0≤ x ≤ 0.3) was investigated at 1200 ºC as a function of oxygen activity, aO2 and cationic composition, x. At different cationic compositions, cation tracer diffusion coefficients, D*Me of Me = Fe and Ti were measured as a function of oxygen activity. Plots of log DMe vs. loga0 show V-shaped curves, indicating that different types of point defects prevail at high anc low oxygen activities. Thermogravimetric experiments were conducted, using a high resolution microbalance, to determine the deviation from stoichiometry in (Fe1-xTix)3-δO4 at 1200 °C. δversus log aO2 curves are S-shaped. An analysis of the oxygen activity dependences of thecation diffusion coefficients and the deviation from stoichiometry with regardto the point defect structure suggests that at high oxygen activities cation vacancies are the predominant defects governing the deviation from stoichiometry and the diffusion ofcations. At low oxygen activities, and at small values of x, cation interstitials determine the deviation from stoichiometry, while they dominate for 0 ≤ x ≤ 0.3 inthe cation diffusion.


2008 ◽  
Vol 277 ◽  
pp. 119-124 ◽  
Author(s):  
Ü. Ugaste ◽  
J. Priimets ◽  
Tony Laas

The impact of thermodynamic factors on deviation from linearity of diffusion path in the ternary system Cu-Fe-Ni is analyzed. For that the slope function of the diffusion path for the diffusion couples 65Ni30Cu5Fe –29.5Ni16.5Cu54Fe, 49.5Ni50.5Fe – 51Ni49Cu and 84Cu16Ni – 50Ni50Fe, annealed at 1000°C for 196h, were calculated by an approximate equation using only thermodynamic data. Results of the calculation were compared with the values of the slope function obtained directly from experimental data. It is shown that despite of the fact that the tracer diffusion coefficients of the components in the system Cu-Fe-Ni are not equal the coincidence between the calculated and experimental values of the slope function is remarkable. This allows us to conclude that at least in this case the deviation of the diffusion path from linearity depends mainly on the thermodynamic properties of the system.


1998 ◽  
Vol 142 (1) ◽  
pp. 101-115 ◽  
Author(s):  
Tzuu-Shuh Jou ◽  
Eveline E. Schneeberger ◽  
W. James Nelson

Tight junctions (TJ) govern ion and solute diffusion through the paracellular space (gate function), and restrict mixing of membrane proteins and lipids between membrane domains (fence function) of polarized epithelial cells. We examined roles of the RhoA and Rac1 GTPases in regulating TJ structure and function in MDCK cells using the tetracycline repressible transactivator to regulate RhoAV14, RhoAN19, Rac1V12, and Rac1N17 expression. Both constitutively active and dominant negative RhoA or Rac1 perturbed TJ gate function (transepithelial electrical resistance, tracer diffusion) in a dose-dependent and reversible manner. Freeze-fracture EM and immunofluoresence microscopy revealed abnormal TJ strand morphology and protein (occludin, ZO-1) localization in RhoAV14 and Rac1V12 cells. However, TJ strand morphology and protein localization appeared normal in RhoAN19 and Rac1N17 cells. All mutant GTPases disrupted the fence function of the TJ (interdomain diffusion of a fluorescent lipid), but targeting and organization of a membrane protein in the apical membrane were unaffected. Expression levels and protein complexes of occludin and ZO-1 appeared normal in all mutant cells, although ZO-1 was more readily solubilized from RhoAV14-expressing cells with Triton X-100. These results show that RhoA and Rac1 regulate gate and fence functions of the TJ, and play a role in the spatial organization of TJ proteins at the apex of the lateral membrane.


Sign in / Sign up

Export Citation Format

Share Document