Fluorescence spectra, fluorescence quantum yields and fluorescence lifetimes of polymers having trans-1,2-dicarbazolylyclobutane or carbazolyl group

1982 ◽  
Vol 89 (4) ◽  
pp. 329-332 ◽  
Author(s):  
Noboru Kitamura ◽  
Takashi Inoque ◽  
Shigeo Tazuke
2016 ◽  
Vol 12 ◽  
pp. 825-834 ◽  
Author(s):  
Andreea Petronela Diac ◽  
Ana-Maria Ţepeş ◽  
Albert Soran ◽  
Ion Grosu ◽  
Anamaria Terec ◽  
...  

New indeno[1,2-c]pyran-3-ones bearing different substituents at the pyran moiety were synthesized and their photophysical properties were investigated. In solution all compounds were found to be blue emitters and the trans isomers exhibited significantly higher fluorescence quantum yields (relative to 9,10-diphenylanthracene) as compared to the corresponding cis isomers. The solid-state fluorescence spectra revealed an important red shift of λmax due to intermolecular interactions in the lattice, along with an emission-band broadening, as compared to the solution fluorescence spectra.


2005 ◽  
Vol 09 (06) ◽  
pp. 430-435 ◽  
Author(s):  
Can-Cheng Guo ◽  
Tie-Gang Ren ◽  
Jian Wang ◽  
Chun-Yan Li ◽  
Jian-Xin Song

Five new meso-tetrakis(1-arylpyrazol-4-yl)porphyrins were synthesized to investigate their fluorescence properties. Preparation of these porphyrins was carried out by cyclization of tetramethoxypropane with substituted phenylhydrazine, followed by formylation to give the corresponding aldehydes, which reacted with pyrrole under the Adler reaction condition to get the target porphyrins (1a-1e). All the porphyrins were characterized by 1 H NMR, elemental analysis, UV-vis spectra and mass spectra. Red fluorescence emission of these porphyrins was observed in fluorescence spectra. Compared with meso-tetraphenylporphyrin (TPPH2), these meso-tetrakis(1-arylpyrazol-4-yl) porphyrins had a significant red shift in UV-vis and fluorescence spectra with increased fluorescence quantum yields.


Author(s):  
GARY A. BAKER ◽  
FRANK V. BRIGHT ◽  
MICHAEL R. DETTY ◽  
SIDDHARTH PANDEY ◽  
COREY E. STILTS ◽  
...  

Series of 5,10,15,20-tetraarylporphyrins 1 and 5,10,15,20-tetrakis[4-(arylethynyl)phenyl]porphyrins 2 were prepared via condensation of pyrrole with the appropriate benzaldehyde or 4-(arylethynyl)benzaldehyde derivative (3). Condensation of meso-phenyldipyrromethane with mixtures of benzaldehyde and 4-(trimethylsilyl-ethynyl)benzaldehyde gave a separable mixture of mono- (6), bis- (both cis-7 and trans-8) and tris[4-(trimethylsilylethynyl)phenyl]porphyrin (9). Following removal of the trimethylsilyl groups of 6–9, the 4-ethynylphenyl groups of 11–14 were coupled to 1-iodo-3,5-di(trifluoromethyl)benzene with Pd ( OAc )2 to give 15–18 bearing one, two (both cis- and trans-) and three 4-[bis-3,5-(trifluoromethyl)phenylethynyl]phenyl groups respectively. Coupling of 11 and 1-iodo-4-nitrobenzene with Pd ( OAc )2 gave porphyrin 19 with one 4-(4-nitrophenylethynyl)phenyl group. Porphyrin 24 with a p-quinone linked to the porphyrin core via a phenylethynyl group was prepared via similar chemistry. The absorbance spectra, emission maxima, excited-state fluorescence lifetimes, quantum yields of fluorescence, rates of fluorescence and rates of non-radiative decay were measured for each of the porphyrins. Absorbance spectra and emission maxima were nearly identical for all the porphyrins of this study, which suggests that the aryl groups and 4-(arylethynyl)phenyl groups are not strongly coupled to the porphyrin core in these metal-free compounds. Fluorescence quantum yields and rates of radiative decay were larger for porphyrins bearing 4-(arylethynyl)phenyl groups, while excited-state fluorescence lifetimes were somewhat shorter. These effects were additive for each additional 4-(arylethynyl)phenyl group.


2007 ◽  
Vol 11 (08) ◽  
pp. 613-617 ◽  
Author(s):  
Jannie C. Swarts ◽  
M. David Maree

The first observation of direct room temperature delayed fluorescence from non-peripherally substituted phthalocyanines is reported. The quantum yields of delayed fluorescence and delayed fluorescence lifetimes were determined and are discussed. The normal fluorescence quantum yields and photodegradative quantum yields of these compounds were also determined.


2021 ◽  
Author(s):  
Jesper Dahl Jensen ◽  
Niels Bisballe ◽  
Laura Kacenauskaite ◽  
Maria Storm Thomsen ◽  
Junsheng Chen ◽  
...  

Access to functionalization of new sites on the triangulenium core structure has been achieved at an early stage by chlorination with N-chlorosuccinimide (NCS), giving rise to two new triangulenium dyes (1 and 2). By introducing the chlorine functionalities in the acridinium precursor, positions complementary to those previously accessed by electrophilic aromatic substitution of the final dyes can be accesed. The chlorination is selective, giving only one regioisomer for both mono- and dichlorination products. For the monochlorinated acridinium compound a highly selective ring-closing reaction was discovered to generate only a single regioisomer of the cationic [4]helicene product. This discovery aspired further investigations into the mechanism of [4]helicene formation and to the first isolation of the previously proposed intermediate of the two-step SNAr reaction, key to all aza-bridged triangulenium and helicenium systems. A late stage functionalization of DAOTA+ with NCS gave rise to a different dichlorinated compound (2). The fully ring closed chlorinated triangulenium dyes 1, 2 and 3 show a redshift in absorption and emission relative to the non-chlorinated analogues, while still maintaining relatively high fluorescence quantum yields of 36%, 26%, and 41%, and long fluorescence lifetimes of 15 ns, 12.5 ns and 16 ns, respectively. Cyclic voltammetry shows that chlorination of the triangulenium dyes significantly lowers reduction potentials and thus allows for efficient tuning of redox and photo-redox properties.


2019 ◽  
Vol 10 (48) ◽  
pp. 11013-11022 ◽  
Author(s):  
Joscha Hoche ◽  
Alexander Schulz ◽  
Lysanne Monika Dietrich ◽  
Alexander Humeniuk ◽  
Matthias Stolte ◽  
...  

An increasing activation energy barrier to a conical intersection was identified as the reason for higher fluorescence lifetimes and quantum yields for merocyanines in polar solvents.


1973 ◽  
Vol 26 (8) ◽  
pp. 1617 ◽  
Author(s):  
J Ferguson ◽  
AWH Mau

The absorption and fluorescence spectra of acridine orange, proflavine, and rhodamine B have been studied with particular attention being paid to the acid-base properties of these dyes in polar and non-polar solvents. These studies show that the neutral acridine dyes do not form dimers but they are readily protonated even in non-polar solvents due to traces of water which are difficult to remove. Attempts to achieve laser emission form the acridine dyes were unsuccessful, probably because of their low fluorescence quantum yields. Suggestions are made for optimizing the laser efficiency of rhodamine B in various alcohol solutions at low temperatures.


2009 ◽  
Vol 13 (12) ◽  
pp. 1221-1226 ◽  
Author(s):  
Lei Shi ◽  
Hai-Yang Liu ◽  
Han Shen ◽  
Jun Hu ◽  
Guo-Liang Zhang ◽  
...  

A series of mono-hydroxyl corrole bearing a fluorine (1), chlorine (2), bromine (3) and iodine (4) atom on its 10-phenyl group have been synthesized. Fluorescence spectroscopy shows that the halogen atom at meso-phenyl group of corroles exhibit significant heavy-atom effect on their photophysical properties. Fluorescence quantum yields and the lifetime of these corroles decrease with the increasing of the atomic weight of halogen atoms. The quenching of the fluorescence could be interpreted in terms of a heavy atom-induced increase in intersystem crossing from S1 to T1. The intersystem crossing rate constant of these corroles were also determined by transient fluorescence spectra.


Sign in / Sign up

Export Citation Format

Share Document