Photosensitized DNA breaks and DNA-to-protein crosslinks induced in human cells by antitumor agent gilvocarcin V

1988 ◽  
Vol 67 (3-4) ◽  
pp. 267-274 ◽  
Author(s):  
Meyrick J. Peak ◽  
Jennifer G. Peak ◽  
Christine M. Blaumueller ◽  
Rosalie K. Elespuru
2009 ◽  
Vol 20 (9) ◽  
pp. 2351-2360 ◽  
Author(s):  
Hae Yong Yoo ◽  
Akiko Kumagai ◽  
Anna Shevchenko ◽  
Andrej Shevchenko ◽  
William G. Dunphy

The activation of ATR-ATRIP in response to double-stranded DNA breaks (DSBs) depends upon ATM in human cells and Xenopus egg extracts. One important aspect of this dependency involves regulation of TopBP1 by ATM. In Xenopus egg extracts, ATM associates with TopBP1 and thereupon phosphorylates it on S1131. This phosphorylation enhances the capacity of TopBP1 to activate the ATR-ATRIP complex. We show that TopBP1 also interacts with the Mre11-Rad50-Nbs1 (MRN) complex in egg extracts in a checkpoint-regulated manner. This interaction involves the Nbs1 subunit of the complex. ATM can no longer interact with TopBP1 in Nbs1-depleted egg extracts, which suggests that the MRN complex helps to bridge ATM and TopBP1 together. The association between TopBP1 and Nbs1 involves the first pair of BRCT repeats in TopBP1. In addition, the two tandem BRCT repeats of Nbs1 are required for this binding. Functional studies with mutated forms of TopBP1 and Nbs1 suggested that the BRCT-dependent association of these proteins is critical for a normal checkpoint response to DSBs. These findings suggest that the MRN complex is a crucial mediator in the process whereby ATM promotes the TopBP1-dependent activation of ATR-ATRIP in response to DSBs.


Author(s):  
Bo Lambert ◽  
Margareta Sten ◽  
Stefan Söderhäll ◽  
Ulrik Ringborg ◽  
Rolf Lewensohn

2021 ◽  
Author(s):  
Matthew G Durrant ◽  
Alison Fanton ◽  
Josh Tycko ◽  
Michaela Hinks ◽  
Sita Chandrasekaran ◽  
...  

Recent microbial genome sequencing efforts have revealed a vast reservoir of mobile genetic elements containing integrases that could be useful genome engineering tools. Large serine recombinases (LSRs), such as Bxb1 and PhiC31, are bacteriophage-encoded integrases that can facilitate the insertion of phage DNA into bacterial genomes. However, only a few LSRs have been previously characterized and they have limited efficiency in human cells. Here, we developed a systematic computational discovery workflow that searches across the bacterial tree of life to expand the diversity of known LSRs and their cognate DNA attachment sites by >100-fold. We validated this approach via experimental characterization of LSRs, leading to three classes of LSRs distinguished from one another by their efficiency and specificity. We identify landing pad LSRs that efficiently integrate into native attachment sites in a human cell context, human genome-targeting LSRs with computationally predictable pseudosites, and multi-targeting LSRs that can unidirectionally integrate cargos with similar efficiency and superior specificity to commonly used transposases. LSRs from each category were functionally characterized in human cells, overall achieving up to 7-fold higher plasmid recombination than Bxb1 and genome insertion efficiencies of 40-70% with cargo sizes over 7 kb. Overall, we establish a paradigm for the large-scale discovery of microbial recombinases directly from sequencing data and the reconstruction of their target sites. This strategy provided a rich resource of over 60 experimentally characterized LSRs that can function in human cells and thousands of additional candidates for large-payload genome editing without double-stranded DNA breaks.


1985 ◽  
Vol 73 (1) ◽  
pp. 159-186
Author(s):  
A.M. Mullinger ◽  
R.T. Johnson

DNA repair occurs in metaphase-arrested cells in response to ultraviolet irradiation. In the presence of the repair synthesis inhibitors hydroxyurea and 1-beta-D-arabinofuranosylcytosine the chromosomes of such cells, as seen in Carnoy-fixed preparations, are decondensed. The extent of decondensation is related to both the u.v. dose and the duration of incubation in the presence of inhibitors. For any particular cell type there is a reasonable correlation between the amount of decondensation and the number of single-strand DNA breaks generated by the repair process under the same inhibitory conditions, though the chromosome changes continue after the number of single-strand breaks has reached a plateau. The dose response of chromosome decondensation varies between different cell types but is in general correlated with differences in levels of single-strand breaks accumulated under comparable inhibitory conditions. Decondensation can be detected after 0.5 Jm-2 in repair-competent human cells. In human cells defective in excision repair there is much less chromosome decondensation in response to the same u.v. dose and time of repair inhibition. However, a simian virus 40-transformed muntjac cell displays pronounced chromosome decondensation but has limited incision ability. Both chromosome decondensation and single-strand break accumulation in the presence of inhibitors are reversed when DNA precursors are provided, but reversal after higher u.v. doses and longer periods of incubation leads to recondensed chromosomes that are fragmented. Elution of the DNA from such cells through polycarbonate filters under non-denaturing conditions reveals that double-strand DNA breaks are generated during the period of incubation with inhibitors. Although the chromosomes of repair-inhibited metaphase cells are decondensed in fixed preparations, their morphology appears normal in intact cells. The cells also retain a capacity to induce prematurely condensed chromosomes (PCC) when fused with interphase cells: compared with control mitotic cells, the speed of induction is sometimes reduced but the final amount of PCC produced is similar.


2006 ◽  
Vol 26 (5) ◽  
pp. 1839-1849 ◽  
Author(s):  
Arman Nabatiyan ◽  
Dávid Szüts ◽  
Torsten Krude

ABSTRACT Genome stability in eukaryotic cells is maintained through efficient DNA damage repair pathways, which have to access and utilize chromatin as their natural template. Here we investigate the role of chromatin assembly factor 1 (CAF-1) and its interacting protein, PCNA, in the response of quiescent human cells to DNA double-strand breaks (DSBs). The expression of CAF-1 and PCNA is dramatically induced in quiescent cells upon the generation of DSBs by the radiomimetic drug bleocin (a bleomycin compound) or by ionizing radiation. This induction depends on DNA-PK. CAF-1 and PCNA are recruited to damaged chromatin undergoing DNA repair of single- and double-strand DNA breaks by the base excision repair and nonhomologous end-joining pathways, respectively, in the absence of extensive DNA synthesis. CAF-1 prepared from repair-proficient quiescent cells after induction by bleocin mediates nucleosome assembly in vitro. Depletion of CAF-1 by RNA interference in bleocin-treated quiescent cells in vivo results in a significant loss of cell viability and an accumulation of DSBs. These results support a novel and essential role for CAF-1 in the response of quiescent human cells to DSBs, possibly by reassembling chromatin following repair of DNA strand breaks.


1987 ◽  
Vol 65 (11) ◽  
pp. 925-929 ◽  
Author(s):  
Aaron Y. Tagger ◽  
Joan Boux ◽  
Jim A. Wright

The antitumor agent hydroxyurea is a potent inhibitor of cell division and selectivity toxic for rapidly proliferating cells. This drug has been used in the treatment of human cancer and, since drug transport is an important aspect of drug action, we investigated the mechanism of hydroxy[14C]urea uptake by human diploid fibroblasts and their SV40-virus-transformed counterparts. Kinetic analysis of drug uptake, studies with metabolic inhibitors, and estimates of cell/medium distribution ratios and temperature coefficient (Q10) values indicated that hydroxyurea enters normal and SV40-virus-transformed human cells by a mechanism of diffusion.


2020 ◽  
Author(s):  
Ji-Hoon Lee ◽  
Seung W. Ryu ◽  
Nicolette A. Ender ◽  
Tanya T. Paull

SummaryLoss of the ataxia-telangiectasia mutated (ATM) kinase causes cerebellum-specific neurodegeneration in humans. We previously demonstrated that deficiency in ATM activation via oxidative stress generates high levels of insoluble protein aggregates in human cells, reminiscent of protein dysfunction in common neurodegenerative disorders. Here we show that this process is driven by poly-ADP-ribose polymerases (PARPs) and that the insoluble protein species arise from intrinsically disordered proteins associating with PAR-associated genomic sites in ATM-deficient cells. The lesions implicated in this process are single-strand DNA breaks dependent on reactive oxygen species, transcription, and R-loops. Human cells expressing Mre11 A-T-like disorder (ATLD) mutants also show PARP-dependent aggregation identical to that of ATM deficiency. Lastly, analysis of A-T patient cerebellum samples shows widespread protein aggregation as well as loss of proteins known to be critical in human spinocerebellar ataxias. These results provide a new hypothesis for loss of protein integrity and cerebellum function in A-T.


2019 ◽  
Author(s):  
Yilun Sun ◽  
Lisa M. Miller Jenkins ◽  
Yijun P. Su ◽  
Karin C. Nitiss ◽  
John L. Nitiss ◽  
...  

SUMMARYTopoisomerase cleavage complexes (TOPccs) can be stalled physiologically and by the anticancer drugs camptothecins (TOP1 inhibitors) and etoposide (TOP2 inhibitor), yielding irreversible TOP DNA-protein crosslinks (TOP-DPCs). Here we elucidate how TOP-DPCs are degraded via the SUMO-ubiquitin (Ub) pathway. We show that in human cells, TOP-DPCs are promptly and sequentially conjugated by SUMO-2/3, SUMO-1 and Ub. SUMOylation is catalyzed by the SUMO ligase PIAS4, which forms a complex with both TOP1 and TOP2α and β. RNF4 acts as the SUMO-targeted ubiquitin ligase (STUbL) for both TOP1- and TOP2-DPCs in a SUMO-dependent but replication/transcription-independent manner. This SUMO-Ub pathway is conserved in yeast with Siz1 the ortholog of PIAS4 and Slx5-Slx8 the ortholog of RNF4. Our study reveals a conserved SUMO-dependent ubiquitylation pathway for proteasomal degradation of both TOP1- and TOP2-DPCs and potentially for other DPCs.Abstract FigureIn BriefTopoisomerase DNA-protein crosslinks (TOP-DPCs) are the therapeutic mechanism of clinical TOP inhibitors (camptothecin and etoposide). TOP-DPCs induce rapid and sequential conjugation of SUMO-2/3- SUMO-1 and ubiquitin catalyzed by activation of PIAS4 through its DNA-binding SAP domain and RNF4 through its SIM domains. This SUMO-ubiquitin cascade triggers proteasomal degradation of TOP-DPCs.HIGHLIGHTSAbortive topoisomerase I (TOP1) and II (TOP2) cleavage complexes resulting in DNA-protein crosslinks (TOP-DPCs) are rapidly and sequentially modified by SUMO-2/3, SUMO-1 and ubiquitin before their proteasomal degradation.PIAS4 SUMOylates TOP-DPCs via its DNA-binding SAP domain independently of DNA transactions and DNA damage responses.RNF4 ubiquitylates SUMOylated TOP-DPCs and drives their proteasomal degradation.TOP-DPC processing by the SUMO-Ub pathways is conserved in yeast and human cells.


Sign in / Sign up

Export Citation Format

Share Document