scholarly journals Induction of CAF-1 Expression in Response to DNA Strand Breaks in Quiescent Human Cells

2006 ◽  
Vol 26 (5) ◽  
pp. 1839-1849 ◽  
Author(s):  
Arman Nabatiyan ◽  
Dávid Szüts ◽  
Torsten Krude

ABSTRACT Genome stability in eukaryotic cells is maintained through efficient DNA damage repair pathways, which have to access and utilize chromatin as their natural template. Here we investigate the role of chromatin assembly factor 1 (CAF-1) and its interacting protein, PCNA, in the response of quiescent human cells to DNA double-strand breaks (DSBs). The expression of CAF-1 and PCNA is dramatically induced in quiescent cells upon the generation of DSBs by the radiomimetic drug bleocin (a bleomycin compound) or by ionizing radiation. This induction depends on DNA-PK. CAF-1 and PCNA are recruited to damaged chromatin undergoing DNA repair of single- and double-strand DNA breaks by the base excision repair and nonhomologous end-joining pathways, respectively, in the absence of extensive DNA synthesis. CAF-1 prepared from repair-proficient quiescent cells after induction by bleocin mediates nucleosome assembly in vitro. Depletion of CAF-1 by RNA interference in bleocin-treated quiescent cells in vivo results in a significant loss of cell viability and an accumulation of DSBs. These results support a novel and essential role for CAF-1 in the response of quiescent human cells to DSBs, possibly by reassembling chromatin following repair of DNA strand breaks.

2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 13005-13005 ◽  
Author(s):  
L. Liu ◽  
A. Bulgar ◽  
J. Donze ◽  
B. J. Adams ◽  
C. P. Theuer ◽  
...  

13005 Background: TRC102 (methoxyamine) reverses resistance to alkylating agents by inhibiting base excision repair (BER; a mechanism of DNA repair), thereby increasing DNA strand breaks and potentiating the anti-tumor activity of alkylating agents without additional toxicity, Based on these data, TRC102 is currently being studied in combination with temozolomide in a phase 1 trial. We hypothesized that inhibition of BER by TRC102 would also increase DNA strand breaks and improve the anti-tumor activity of anti-metabolite chemotherapeutics, including pemetrexed, because these agents also produce AP sites that are recognized and repaired by BER. Methods: Pemetrexed- induced AP sites and BER inhibition was quantified using an apurinic/apyrimidinic (AP) site assay in vitro. Single and double DNA strand breaks were quantified by the Comet assay in vitro and anti-tumor activity was assessed in an in vivo xenograft study of subcutaneously implanted H460 human lung cancer cells. Results: Pemetrexed induced and TRC102 reduced the number of available AP sites in pemetrexed- treated H460 cells (by 60–80%), indicating successful inhibition of BER. TRC102 treatment increased DNA strand breaks in pemetrexed-treated H460 cells (2 fold increase versus treatment with pemetrexed alone). Premetrexed treatment alone and in combination with TRC 102 delayed tumor growth in vivo (tumor growth delay of 4.7 days in the 150 mg/m2 pemetrexed alone group, 5.7 days in the 150 mg/m2 pemetrexed + 2 mg/m2 TRC102 group and 6.9 days in the 150 mg/m2 pemetrexed + 4 mg/m2 TRC102 group); in vivo systemic toxicity was not increased. TRC102 alone had no effect in vitro or in vivo. Conclusions: TRC102 effectively inhibits BER in lung cancer cells treated with pemetrexed. Inhibition of DNA repair by TRC102 results in an increase in DNA strand breaks and improved anti-tumor activity versus treatment with pemetrexed alone. Given its preclinical efficacy and safety profile, study of TRC102 combined with pemetrexed in a phase 1 trial is warranted. No significant financial relationships to disclose.


Blood ◽  
1988 ◽  
Vol 72 (6) ◽  
pp. 1884-1890 ◽  
Author(s):  
AD Ho ◽  
K Ganeshaguru ◽  
WU Knauf ◽  
G Dietz ◽  
I Trede ◽  
...  

Abstract Deoxycoformycin (DCF), an adenosine deaminase (ADA) inhibitor, has been shown to be active in lymphoid neoplasms. The mechanism of cytotoxicity might involve accumulation of deoxyadenosine triphosphate (dATP), depletion of the nicotinamide adenine dinucleotide (NAD) and ATP pool, induction of double-stranded DNA strand breaks, or inhibition of S- adenosyl homocysteine hydrolase (SAH-hydrolase). We have investigated the biochemical changes in the circulating malignant cells of patients with chronic leukemia/lymphoma who were treated with DCF (4 mg/m2 weekly). Blood samples were taken from 17 patients with 60% or more circulating leukemic cells before, 4, 24, and 48 hours and five days after the first administration of DCF. Leukemic cells were separated and studied for changes in ADA, dATP, ATP, NAD, and SAH-hydrolase levels and DNA strand breaks and the data analyzed according to clinical response. Inhibition of ADA activity was found in all except one patient at 4 to 24 hours after the first administration of DCF. dATP started to accumulate at four hours, reached a maximum level between 24 and 48 hours, and returned to base values on the fifth day. Intracellular ATP and NAD levels were transiently reduced in some of the patients. However, no correlation between these changes and a clinical response could be found. DNA strand breaks could be studied in 13 patients. A significant increase in DNA breaks at 24 to 48 hours was found in six of the seven responders but only in one of the six nonresponders. At 24 hours, SAH-hydrolase levels were reduced in all seven responders studied, but only in two of the seven nonresponders. The difference in inhibition of SAH-hydrolase was statistically significant (P = .0023). These results suggest that DNA strand breaks and inhibition of SAH-hydrolase correlate with clinical response.


Author(s):  
Charles R. Long ◽  
John R. Dobrinsky ◽  
Wesley M. Garrett ◽  
Lawrence A. Johnson

Toxins ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 348 ◽  
Author(s):  
Leticia Díez-Quijada ◽  
Concepción Medrano-Padial ◽  
María Llana-Ruiz-Cabello ◽  
Giorgiana M. Cătunescu ◽  
Rosario Moyano ◽  
...  

Cylindrospermopsin (CYN) and microcystins (MC) are cyanotoxins that can occur simultaneously in contaminated water and food. CYN/MC-LR mixtures previously investigated in vitro showed an induction of micronucleus (MN) formation only in the presence of the metabolic fraction S9. When this is the case, the European Food Safety Authority recommends a follow up to in vivo testing. Thus, rats were orally exposed to 7.5 + 75, 23.7 + 237, and 75 + 750 μg CYN/MC-LR/kg body weight (b.w.). The MN test in bone marrow was performed, and the standard and modified comet assays were carried out to measure DNA strand breaks or oxidative DNA damage in stomach, liver, and blood cells. The results revealed an increase in MN formation in bone marrow, at all the assayed doses. However, no DNA strand breaks nor oxidative DNA damage were induced, as shown in the comet assays. The histopathological study indicated alterations only in the highest dose group. Liver was the target organ showing fatty degeneration and necrotic hepatocytes in centrilobular areas, as well as a light mononuclear inflammatory periportal infiltrate. Additionally, the stomach had flaking epithelium and mild necrosis of epithelial cells. Therefore, the combined exposure to cyanotoxins may induce genotoxic and histopathological damage in vivo.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Emilio Di Ianni ◽  
Johanna Samulin Erdem ◽  
Peter Møller ◽  
Nicklas Mønster Sahlgren ◽  
Sarah Søs Poulsen ◽  
...  

Abstract Background Multi-walled carbon nanotubes (MWCNT) have received attention due to extraordinary properties, resulting in concerns for occupational health and safety. Costs and ethical concerns of animal testing drive a need for in vitro models with predictive power in respiratory toxicity. The aim of this study was to assess pro-inflammatory response (Interleukin-8 expression, IL-8) and genotoxicity (DNA strand breaks) caused by MWCNT with different physicochemical properties in different pulmonary cell models and correlate these to previously published in vivo data. Seven MWCNT were selected; two long/thick (NRCWE-006/Mitsui-7 and NM-401), two short/thin (NM-400 and NM-403), a pristine (NRCWE-040) and two surface modified; hydroxylated (NRCWE-041) and carboxylated (NRCWE-042). Carbon black Printex90 (CB) was included as benchmark material. Human alveolar epithelial cells (A549) and monocyte-derived macrophages (THP-1a) were exposed to nanomaterials (NM) in submerged conditions, and two materials (NM-400 and NM-401) in co-cultures of A549/THP-1a and lung fibroblasts (WI-38) in an air-liquid interface (ALI) system. Effective doses were quantified by thermo-gravimetric-mass spectrometry analysis (TGA-MS). To compare genotoxicity in vitro and in vivo, we developed a scoring system based on a categorization of effects into standard deviation (SD) units (< 1, 1, 2, 3 or 4 standard deviation increases) for the increasing genotoxicity. Results Effective doses were shown to be 25 to 53%, and 21 to 57% of the doses administered to A549 and THP-1a, respectively. In submerged conditions (A549 and THP-1a cells), all NM induced dose-dependent IL-8 expression. NM-401 and NRCWE-006 caused the strongest pro-inflammatory response. In the ALI-exposed co-culture, only NM-401 caused increased IL-8 expression, and no DNA strand breaks were observed. Strong correlations were found between in vitro and in vivo inflammation when doses were normalized by surface area (also proxy for diameter and length). Significantly increased DNA damage was found for all MWCNT in THP-1a cells, and for short MWCNT in A549 cells. A concordance in genotoxicity of 83% was obtained between THP-1a cells and broncho-alveolar lavaged (BAL) cells. Conclusion This study shows correlations of pro-inflammatory potential in A549 and THP-1a cells with neutrophil influx in mice, and concordance in genotoxic response between THP-1a cells and BAL cells, for seven MWCNT.


1987 ◽  
Vol 8 (11) ◽  
pp. 1657-1662 ◽  
Author(s):  
Paul V. Woolley ◽  
Shailendra Kumar ◽  
Peter Fitzgerald ◽  
Robert T. Simpson

PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0183684 ◽  
Author(s):  
Diane Penndorf ◽  
Vedrana Tadić ◽  
Otto W. Witte ◽  
Julian Grosskreutz ◽  
Alexandra Kretz

Blood ◽  
1988 ◽  
Vol 72 (6) ◽  
pp. 1884-1890
Author(s):  
AD Ho ◽  
K Ganeshaguru ◽  
WU Knauf ◽  
G Dietz ◽  
I Trede ◽  
...  

Deoxycoformycin (DCF), an adenosine deaminase (ADA) inhibitor, has been shown to be active in lymphoid neoplasms. The mechanism of cytotoxicity might involve accumulation of deoxyadenosine triphosphate (dATP), depletion of the nicotinamide adenine dinucleotide (NAD) and ATP pool, induction of double-stranded DNA strand breaks, or inhibition of S- adenosyl homocysteine hydrolase (SAH-hydrolase). We have investigated the biochemical changes in the circulating malignant cells of patients with chronic leukemia/lymphoma who were treated with DCF (4 mg/m2 weekly). Blood samples were taken from 17 patients with 60% or more circulating leukemic cells before, 4, 24, and 48 hours and five days after the first administration of DCF. Leukemic cells were separated and studied for changes in ADA, dATP, ATP, NAD, and SAH-hydrolase levels and DNA strand breaks and the data analyzed according to clinical response. Inhibition of ADA activity was found in all except one patient at 4 to 24 hours after the first administration of DCF. dATP started to accumulate at four hours, reached a maximum level between 24 and 48 hours, and returned to base values on the fifth day. Intracellular ATP and NAD levels were transiently reduced in some of the patients. However, no correlation between these changes and a clinical response could be found. DNA strand breaks could be studied in 13 patients. A significant increase in DNA breaks at 24 to 48 hours was found in six of the seven responders but only in one of the six nonresponders. At 24 hours, SAH-hydrolase levels were reduced in all seven responders studied, but only in two of the seven nonresponders. The difference in inhibition of SAH-hydrolase was statistically significant (P = .0023). These results suggest that DNA strand breaks and inhibition of SAH-hydrolase correlate with clinical response.


Sign in / Sign up

Export Citation Format

Share Document