sumo ligase
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 31)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
Vol 220 (12) ◽  
Author(s):  
Christopher Ptak ◽  
Natasha O. Saik ◽  
Ashwini Premashankar ◽  
Diego L. Lapetina ◽  
John D. Aitchison ◽  
...  

In eukaryotes, chromatin binding to the inner nuclear membrane (INM) and nuclear pore complexes (NPCs) contributes to spatial organization of the genome and epigenetic programs important for gene expression. In mitosis, chromatin–nuclear envelope (NE) interactions are lost and then formed again as sister chromosomes segregate to postmitotic nuclei. Investigating these processes in S. cerevisiae, we identified temporally and spatially controlled phosphorylation-dependent SUMOylation events that positively regulate postmetaphase chromatin association with the NE. Our work establishes a phosphorylation-mediated targeting mechanism of the SUMO ligase Siz2 to the INM during mitosis, where Siz2 binds to and SUMOylates the VAP protein Scs2. The recruitment of Siz2 through Scs2 is further responsible for a wave of SUMOylation along the INM that supports the assembly and anchorage of subtelomeric chromatin at the INM and localization of an active gene (INO1) to NPCs during the later stages of mitosis and into G1-phase.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. e1009830
Author(s):  
Junya Zhang ◽  
Robert C. Augustine ◽  
Masaharu Suzuki ◽  
Juanjuan Feng ◽  
Si Nian Char ◽  
...  

The post-translational addition of SUMO plays essential roles in numerous eukaryotic processes including cell division, transcription, chromatin organization, DNA repair, and stress defense through its selective conjugation to numerous targets. One prominent plant SUMO ligase is METHYL METHANESULFONATE-SENSITIVE (MMS)-21/HIGH-PLOIDY (HPY)-2/NON-SMC-ELEMENT (NSE)-2, which has been connected genetically to development and endoreduplication. Here, we describe the potential functions of MMS21 through a collection of UniformMu and CRISPR/Cas9 mutants in maize (Zea mays) that display either seed lethality or substantially compromised pollen germination and seed/vegetative development. RNA-seq analyses of leaves, embryos, and endosperm from mms21 plants revealed a substantial dysregulation of the maize transcriptome, including the ectopic expression of seed storage protein mRNAs in leaves and altered accumulation of mRNAs associated with DNA repair and chromatin dynamics. Interaction studies demonstrated that MMS21 associates in the nucleus with the NSE4 and STRUCTURAL MAINTENANCE OF CHROMOSOMES (SMC)-5 components of the chromatin organizer SMC5/6 complex, with in vitro assays confirming that MMS21 will SUMOylate SMC5. Comet assays measuring genome integrity, sensitivity to DNA-damaging agents, and protein versus mRNA abundance comparisons implicated MMS21 in chromatin stability and transcriptional controls on proteome balance. Taken together, we propose that MMS21-directed SUMOylation of the SMC5/6 complex and other targets enables proper gene expression by influencing chromatin structure.


2021 ◽  
Author(s):  
Caroline Mercier ◽  
Brice Roux ◽  
Marien Have ◽  
Léa Le Poder ◽  
Nathalie Duong ◽  
...  

Author(s):  
Yuhang Shi ◽  
Sergio Castro-Gonzalez ◽  
Yuexuan Chen ◽  
Ruth Serra-Moreno

Breast cancer-associated gene 2 (BCA2) is an E3 ubiquitin and SUMO ligase with antiviral properties against HIV. Specifically, BCA2 (i) enhances the restriction imposed by BST2/Tetherin, impeding viral release; (ii) promotes the ubiquitination and degradation of the HIV protein Gag, limiting virion production; (iii) down-regulates NF-κB, which is necessary for HIV RNA synthesis; and (iv) activates the innate transcription factor IRF1. Due to its antiviral properties, ectopic expression of BCA2 in infected cells represents a promising therapeutic approach against HIV infection. However, BCA2 up-regulation is often observed in breast tumors. To date, the studies about BCA2 and cancer development are controversial, stating both pro- and anti-oncogenic roles. Here, we investigated the impact of BCA2 on cellular metabolic activity, cell proliferation, cell migration, and cell cycle progression. In addition, we also examined the ability of BCA2 to regulate NF-κB and IRF1 in transformed and non-tumor breast epithelial environments. Despite the fact that BCA2 promotes the transition from G1 to S phase of the cell cycle, it did not increase cell proliferation, migration nor metabolic activity. As expected, BCA2 maintains its enzymatic function at inhibiting NF-κB in different breast cancer cell lines. However, the effect of BCA2 on IRF1 differs depending on the cellular context. Specifically, BCA2 activates IRF1 in ER+ breast cell lines while it inhibits this transcription factor in ER– breast cancer cells. We hypothesize that the distinct actions of BCA2 over IRF1 may explain, at least in part, the different proposed roles for BCA2 in these cancers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ying Qin ◽  
Qi Li ◽  
Wenbo Liang ◽  
Rongzhen Yan ◽  
Li Tong ◽  
...  

AbstractThe cellular NLRP3 protein level is crucial for assembly and activation of the NLRP3 inflammasome. Various posttranslational modifications (PTMs), including phosphorylation and ubiquitination, control NLRP3 protein degradation and inflammasome activation; however, the function of small ubiquitin-like modifier (SUMO) modification (called SUMOylation) in controlling NLRP3 stability and subsequent inflammasome activation is unclear. Here, we show that the E3 SUMO ligase tripartite motif-containing protein 28 (TRIM28) is an enhancer of NLRP3 inflammasome activation by facilitating NLRP3 expression. TRIM28 binds NLRP3, promotes SUMO1, SUMO2 and SUMO3 modification of NLRP3, and thereby inhibits NLRP3 ubiquitination and proteasomal degradation. Concordantly, Trim28 deficiency attenuates NLRP3 inflammasome activation both in vitro and in vivo. These data identify a mechanism by which SUMOylation controls the cellular NLRP3 level and inflammasome activation, and reveal correlations and interactions of NLRP3 SUMOylation and ubiquitination during inflammasome activation.


2021 ◽  
Author(s):  
Dragomir B Krastev ◽  
Shudong Li ◽  
Yilun Sun ◽  
Andrew Wicks ◽  
Daniel Weekes ◽  
...  

Poly-(ADP-ribose) polymerase inhibitors (PARPi) elicit anti-tumour activity in homologous recombination defective cancers by promoting cytotoxic, chromatin-bound, trapped PARP1. How cells process trapped PARP1 remains unclear. By exploiting wild-type or trapping-resistant PARP1 transgenes combined with either a rapid immunoprecipitation mass-spectrometry of endogenous proteins (RIME)-based approach, or PARP1 Apex2-proximity labelling linked to mass-spectrometry, we generated proteomic profiles of trapped and non-trapped PARP1 complexes. This combined approach identified an interaction between trapped PARP1 and the ubiquitin-regulated p97 ATPase (aka VCP). Subsequent experiments demonstrated that upon trapping, PARP1 is SUMOylated by the SUMO-ligase PIAS4 and subsequently ubiquitinated by the SUMO-targeted E3-ubiquitin ligase, RNF4, events that promote p97 recruitment and p97 ATPase-mediated removal of trapped-PARP1 from chromatin. Consistent with this, small molecule p97 complex inhibitors, including a metabolite of the clinically-used drug disulfiram (CuET) that acts as a p97 sequestration agent, prolong PARP1 trapping and thus enhance PARPi-induced cytotoxicity in homologous recombination-defective tumour cells and patient-derived tumour organoids. Taken together, these results suggest that p97 ATPase plays a key role in the processing of trapped PARP1 from chromatin and the response of homologous recombination defective tumour cells to PARPi.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Farjana Saiada ◽  
Kun Zhang ◽  
Renfeng Li

Abstract Background Sterile alpha motif and HD domain 1 (SAMHD1) is a deoxynucleotide triphosphohydrolase (dNTPase) that restricts the infection of a variety of RNA and DNA viruses, including herpesviruses. The anti-viral function of SAMHD1 is associated with its dNTPase activity, which is regulated by several post-translational modifications, including phosphorylation, acetylation and ubiquitination. Our recent studies also demonstrated that the E3 SUMO ligase PIAS1 functions as an Epstein-Barr virus (EBV) restriction factor. However, whether SAMHD1 is regulated by PIAS1 to restrict EBV replication remains unknown. Results In this study, we showed that PIAS1 interacts with SAMHD1 and promotes its SUMOylation. We identified three lysine residues (K469, K595 and K622) located on the surface of SAMHD1 as the major SUMOylation sites. We demonstrated that phosphorylated SAMHD1 can be SUMOylated by PIAS1 and SUMOylated SAMHD1 can also be phosphorylated by viral protein kinases. We showed that SUMOylation-deficient SAMHD1 loses its anti-EBV activity. Furthermore, we demonstrated that SAMHD1 is associated with EBV genome in a PIAS1-dependent manner. Conclusion Our study reveals that PIAS1 synergizes with SAMHD1 to inhibit EBV lytic replication through protein–protein interaction and SUMOylation.


2021 ◽  
Vol 14 (689) ◽  
pp. eabe9613
Author(s):  
Nathaniel J. Robinson ◽  
Masaru Miyagi ◽  
Jessica A. Scarborough ◽  
Jacob G. Scott ◽  
Derek J. Taylor ◽  
...  

The maintenance of telomere length supports repetitive cell division and therefore plays a central role in cancer development and progression. Telomeres are extended by either the enzyme telomerase or the alternative lengthening of telomeres (ALT) pathway. Here, we found that the telomere-associated protein SLX4IP dictates telomere proteome composition by recruiting and activating the E3 SUMO ligase PIAS1 to the SLX4 complex. PIAS1 SUMOylated the telomere-binding protein RAP1, which disrupted its interaction with the telomere-binding protein TRF2 and facilitated its nucleocytoplasmic shuttling. In the cytosol, RAP1 bound to IκB kinase (IKK), resulting in activation of the transcription factor NF-κB and its induction of Jagged-1 expression, which promoted Notch signaling and the institution of ALT. This axis could be targeted therapeutically in ALT-driven cancers and in tumor cells that develop resistance to antitelomerase therapies. Our results illuminate the mechanisms underlying SLX4IP-dependent telomere plasticity and demonstrate the role of telomere proteins in directly coordinating intracellular signaling and telomere maintenance dynamics.


2021 ◽  
Vol 118 (19) ◽  
pp. e2026844118
Author(s):  
You Yu ◽  
Shibai Li ◽  
Zheng Ser ◽  
Tanmoy Sanyal ◽  
Koyi Choi ◽  
...  

Structural maintenance of chromosomes (SMC) complexes are critical chromatin modulators. In eukaryotes, the cohesin and condensin SMC complexes organize chromatin, while the Smc5/6 complex directly regulates DNA replication and repair. The molecular basis for the distinct functions of Smc5/6 is poorly understood. Here, we report an integrative structural study of the budding yeast Smc5/6 holo-complex using electron microscopy, cross-linking mass spectrometry, and computational modeling. We show that the Smc5/6 complex possesses several unique features, while sharing some architectural characteristics with other SMC complexes. In contrast to arm-folded structures of cohesin and condensin, Smc5 and Smc6 arm regions do not fold back on themselves. Instead, these long filamentous regions interact with subunits uniquely acquired by the Smc5/6 complex, namely the Nse2 SUMO ligase and the Nse5/Nse6 subcomplex, with the latter also serving as a linchpin connecting distal parts of the complex. Our 3.0-Å resolution cryoelectron microscopy structure of the Nse5/Nse6 core further reveals a clasped-hand topology and a dimeric interface important for cell growth. Finally, we provide evidence that Nse5/Nse6 uses its SUMO-binding motifs to contribute to Nse2-mediated sumoylation. Collectively, our integrative study identifies distinct structural features of the Smc5/6 complex and functional cooperation among its coevolved unique subunits.


2021 ◽  
pp. 153447
Author(s):  
Jieming Jiang ◽  
Yun Xie ◽  
Jinju Du ◽  
Chengwei Yang ◽  
Jianbin Lai
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document