The vapor-phase oxidation of n-butane in a flow reactor

1970 ◽  
Vol 15 (3) ◽  
pp. 275-287 ◽  
Author(s):  
C.A. Euker ◽  
J.P. Leinroth
2021 ◽  
pp. 92-97
Author(s):  
M.E. Sharanda ◽  
◽  
A.M. Mylin ◽  
O.Yu. Zinchenko ◽  
V.V. Brei ◽  
...  

The vapor-phase oxidation of mixtures of propylene glycol with methanol and ethanol to methyl and ethyl lactate, respectively, on supported CeO2/Al2O3 catalyst with 10 wt.% CeO2 content was studied. The steel flow reactor with a fixed catalyst bed (4 cm3) was used. 20 wt.% solution of propylene glycol in alcohol was fed to the reactor inlet by Waters 950 pump at LHSV= 0.5-0.8 h-1. Reaction temperature and pressure were varied in the interval of 190-250 0C and 1.3-1.8 bars respectively. Compressed air was given to the reactor inlet at the molar ratio of propylene glycol/O2 = 1. The reaction products were analyzed using gas chromatography (Agilent 7820A) and 3C NMR (Bruker Avance 400) methods. Studied oxidation of propylene glycol in the presence of methanol describes by total reaction CH3CHOHCH2OH +O2 + СН3OH = CH3CHOHCOOСН3 +2H2O At first, hydroxyacetone is formed that is further oxidized to pyruvic aldehyde, which attaches alcohol to form hemiacetal. Then, hemiacetal of methyl glyoxal rearranges into methyl lactate by Cannizzaro. At 220 0C and load on a catalyst of < 2 mmol PG/gcat/h, the selectivity towards methyl lactate reaches 70 wt.% at 100 % propylene glycol conversion. The main by-products are formed as the result of acetaldehyde transformation. Acetaldehyde could be formed at hydroxyacetone aldol decondensation. In the presence of ethanol, the formation of a significant amount of acetaldehyde and its aldol condensation products as well as the formation of diethoxyethane are observed. Therefore, ethyl lactate selectivity at 100 % propylene glycol conversion does not exceed 45 %. Supported CeO2/SiO2 contact was tested in this oxidation reaction also. However, CeO2/SiO2 provides the low, up to 25%, selectivity towards methyl lactate at full propylene glycol conversion. It was shown that at the same conditions methyl lactate is formed with higher selectivity then ethyl lactate. The high methyl lactate yield up to 70 wt.% could be obtained via vapor-phase oxidation of 20% mixture of propylene glycol with methanol by air oxygen on supported CeO2/Al2O3 catalyst at 210 - 220°С and at time contact of 3-4 seconds.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 459
Author(s):  
Maryam Azadbakht ◽  
Elnaz Esmizadeh ◽  
Ali Vahidifar ◽  
Tizazu H. Mekonnen ◽  
Mehdi Salami-Kalajahi

Nitric acid vapor phase oxidation of multi-walled carbon nanotubes (MWCNTs) was proposed as a promising technique to fabricate poly styrene-co-acrylonitrile (SAN)-grafted-CNTs via atom transfer radical polymerization (ATRP). The in-situ ATRP grafting approach was successfully employed to graft polystyrene (PS), SAN and polyacrylonitrile (PAN), onto the convex surfaces of pristine MWCNTs (PCNT) and acid-functionalized MWCNTs (FCNT). Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H-NMR), and thermogravimetric analysis (TGA) confirmed the effectiveness of the modification via the ATRP grafting approach. The molar composition of acrylonitrile in the synthesized copolymer on the surface of CNTs for an FCNTs was calculated to be about 80% and 67.5% by 1H-NMR and TGA respectively, whereas the value is lower for PCNTs. Morphological studies showed that SAN-grafted FCNTs exhibit rougher surface morphology compared to the SAN-grafted PCNTs. Moreover, the higher diameter of the FCNTs indicated the higher polymer content, which was coated onto CNTs functionalized by vapor-phase oxidation. Therefore, the vapor phase oxidation strategy employed in this study could be utilized as a general method to prepare CNTs which can serve as an ATRP macroinitiator for the fabrication of various polymer grafted CNTs.


Author(s):  
Vijendra Kumar Yadav ◽  
Taraknath Das

Alumina-supported Fe-Mn oxide catalysts were synthesized by the incipient wetness impregnation method. The catalysts were characterized by using various characterization techniques such as surface area, XRD, H2-TPR, and Raman spectra...


2000 ◽  
Vol 192 (1) ◽  
pp. 1-10 ◽  
Author(s):  
D. Heinz ◽  
W.F. Hoelderich ◽  
S. Krill ◽  
W. Boeck ◽  
K. Huthmacher
Keyword(s):  

1978 ◽  
Vol 56 (2) ◽  
pp. 223-229 ◽  
Author(s):  
B. C. Mathur ◽  
D. S. Viswanath
Keyword(s):  

Author(s):  
Shijie Leow ◽  
Andrew J. Koehler ◽  
Lauren E. Cronmiller ◽  
Xiangchen Huo ◽  
Gabriella D. Lahti ◽  
...  

Vapor phase conversion of 3-hydroxybutyric and crotonic acid to propylene in a continuous-flow reactor over silica–alumina and niobium catalysts demonstrates a new strategy for producing renewable fuels and chemicals from wastewater carbon.


Sign in / Sign up

Export Citation Format

Share Document