Catalysis and petrochemistry
Latest Publications


TOTAL DOCUMENTS

39
(FIVE YEARS 39)

H-INDEX

1
(FIVE YEARS 1)

Published By National Academy Of Sciences Of Ukraine (Co. LTD Ukrinformnauka)

2412-4176, 2707-5796

2021 ◽  
pp. 75-83
Author(s):  
I.V. Bacherikova ◽  
◽  
S.B. Grinenko ◽  
L.S. Kuznetsova ◽  
V.O. Zazhigalov ◽  
...  

The properties of some organic materials in the removal of oil from water area were studied. It was shown that available materials as technical wool and sintepon can be used as effective sorbents for petroleum removal from water area. The sample mechanical wringing of these sorbents permits to return the part of adsorbed oil for its next use. The dependence of sorption properties (the adsorbed petroleum mass, specific oil adsorption, return of the oil and selectivity of petroleum removal) and petroleum removal from the number of absorption-release cycles was established. It was established that quantity of adsorbed oil decreases in other next step of removal but mass of oil returned increases in the process of mechanical wringing. The regeneration of these adsorbents by flushing in gasoline permits to obtained the initial properties in oil removal from water area. The sorption elements in the form of bags from linen with these materials were prepared. The dependence of the amount of oil removed by these sorption elements from the time of oil clearing of the water area process was determined and the optimal parameters of petroleum removal were established. It was shown that sorption elements on the base of these materials have adsorption capacity equal to 14-16 g of petroleum/g sorbent at selectivity of petroleum removal more than 70 % and oil recovery degree more than 80 % and the possibility their reusable use on oil spill response. The obtained positive results of oil removal from water area permit to propose in extreme cases of oil spills the available industrial products as jerseys, blankest, jackets etc. use successfully for petroleum spill response. The hydrophobization of these elements permits to improve their properties in oil removal from water area. As results of sorption elements modification the increase of adsorbed oil mass and specific petroleum removal at simultaneous increase of returned oil quantity for its next use and oil removal selectivity were established. It was established that synthesized sorption elements not inferior in properties known industrial sorbents for oil removal from water area.


2021 ◽  
pp. 92-97
Author(s):  
M.E. Sharanda ◽  
◽  
A.M. Mylin ◽  
O.Yu. Zinchenko ◽  
V.V. Brei ◽  
...  

The vapor-phase oxidation of mixtures of propylene glycol with methanol and ethanol to methyl and ethyl lactate, respectively, on supported CeO2/Al2O3 catalyst with 10 wt.% CeO2 content was studied. The steel flow reactor with a fixed catalyst bed (4 cm3) was used. 20 wt.% solution of propylene glycol in alcohol was fed to the reactor inlet by Waters 950 pump at LHSV= 0.5-0.8 h-1. Reaction temperature and pressure were varied in the interval of 190-250 0C and 1.3-1.8 bars respectively. Compressed air was given to the reactor inlet at the molar ratio of propylene glycol/O2 = 1. The reaction products were analyzed using gas chromatography (Agilent 7820A) and 3C NMR (Bruker Avance 400) methods. Studied oxidation of propylene glycol in the presence of methanol describes by total reaction CH3CHOHCH2OH +O2 + СН3OH = CH3CHOHCOOСН3 +2H2O At first, hydroxyacetone is formed that is further oxidized to pyruvic aldehyde, which attaches alcohol to form hemiacetal. Then, hemiacetal of methyl glyoxal rearranges into methyl lactate by Cannizzaro. At 220 0C and load on a catalyst of < 2 mmol PG/gcat/h, the selectivity towards methyl lactate reaches 70 wt.% at 100 % propylene glycol conversion. The main by-products are formed as the result of acetaldehyde transformation. Acetaldehyde could be formed at hydroxyacetone aldol decondensation. In the presence of ethanol, the formation of a significant amount of acetaldehyde and its aldol condensation products as well as the formation of diethoxyethane are observed. Therefore, ethyl lactate selectivity at 100 % propylene glycol conversion does not exceed 45 %. Supported CeO2/SiO2 contact was tested in this oxidation reaction also. However, CeO2/SiO2 provides the low, up to 25%, selectivity towards methyl lactate at full propylene glycol conversion. It was shown that at the same conditions methyl lactate is formed with higher selectivity then ethyl lactate. The high methyl lactate yield up to 70 wt.% could be obtained via vapor-phase oxidation of 20% mixture of propylene glycol with methanol by air oxygen on supported CeO2/Al2O3 catalyst at 210 - 220°С and at time contact of 3-4 seconds.


2021 ◽  
pp. 41-47
Author(s):  
B. Stepasiuk ◽  
◽  
T. Haievska ◽  
O. Spaska ◽  
Yu. Bilokopytov ◽  
...  

The paper is devoted to experimental development of method for 1,1,2-trichlorethane (TCE) dehydrochlorination (DHC). The economic and environmental issues of organic chlorinated compounds processing are described. The basic principle and possible products of TCE processing are presented. The DHC of TCE, which is one of the chlorinated organic wastes produced in the ethylene dichloride process, to vinylidene chloride (VDC) was carried out over over CaO, MgO supported on SiO2 and modified with CsCl catalysts. This process was carried out in a continuous flow fixed-bed reactor. The prepared catalysts were characterized by surface area and base properties before/after reaction. The methodology for determining properties of catalyst is described. Laboratory activity test apparatus was developed, and the schematic diagram is presented in the paper. The method of determination of TCE concentration of was calculated from its partial saturation vapor pressure at a given temperature is presented. Encouraging results were obtained on the catalyst containing 10 % CsCl/CaO·SiO2. The direction of the DHC reaction changed radically under described conditions: VDC was not formed at all and the major products were cis- and trans-1,2-dichloroethene. Interesting results were obtained with the catalytic system comprising 10 % (MgO-CsCl) (1:1) supported on SiO2. DHC of 2 % TCE/Ar at 302 °C proceeds quantitatively over 20 h with selectivity for VDC of more than 80%. These systems are suitable to study the factors providing the binding and removal of HCl from the reaction zone. A possible way to increase the selectivity for VDC is the creation of the conditions favoring the DHC of TCE into VDC by the radical mechanism, which was observed in experiments with 10% CsCl/CaSiO3. The directions for future researches are formulated and described.


2021 ◽  
pp. 1-16
Author(s):  
V.A. Zazhigalov ◽  
◽  
K. Wieczorek-Ciurowa ◽  
O.V. Sachuk ◽  
I.V. Bacherikova ◽  
...  

In this survey we have assessed how mechanochemistry techniques comply with the aims of Green Chemistry to minimise the use of environmentally damaging reactants and unwanted by-products. In the publications the preparation of vanadium-phosphorus oxides as industrial catalysts for maleic anhydride production from n-butane and perspective catalysts of phthalic anhydride manufacture by direct n-pentane oxidation were analyzed. It is shown that mechanochemical activation and synthesis reduces the amount of harmful waste used in the production of the catalyst and increases its effectiveness. Improvement of a catalyst’s properties, help limit production of harmful emissions such as carbon oxides and hydrocarbons. It was established that mechanochemical treatment can by successfully used in the process of industrial vanadium-phosphorus oxide catalysts modification or in the process of introduction in its composition of additives which lead to increase of activity and selectivity of hydrocarbons oxidation. The possibility of the mechanochemistry use in the vanadium-titanium oxide catalysts preparation which are the base catalysts in industrial phthalic anhydride production from o-xylene was determined. It was established that mechanochemical treatment of the vanadium and titanium oxides mixture permits to delete the nitrogen oxides emission in atmosphere and prepared catalysts demonstrate the same phthalic anhydride yield but at low reraction temperature. Catalysts, manufactured by mechanochemical treatment (on the base of molybdenum oxide), provide new techniques for producing compounds as exemplified by the direct oxidation of benzene to form phenol which can replace industrial two-step process from cumene or proposed process of benzene oxidation by N2O. Mechanochemistry treatment could produce catalysts which eliminated the need to use highly toxic nitrogen oxides as reducing agents. The article describes activating Cu-Ce-O catalysts which reduce the temperature of the process for removing carbon monoxide from exhaust gases and as a method for purifying hydrogen u sed in fuel cells. Finally, there is a description of mechanochemically treated catalysts, containing metals and supported on stainless steel supports which are used to remove aromatic hydrocarbons from water sewers.


2021 ◽  
pp. 69-74
Author(s):  
S.O. Zubenko ◽  

Acid value is one of the key technical characteristic of vegetable oils and oleochemicals, obtaining on its basis. The existing standard methods of acid value measurement are relatively complicated and have some disadvantages. There are including utilization of the significant amounts of solvents, throwing out as wastes, and necessity in special equipment for determination. Also, a special issue is visual indication of the equivalence point of indicator transfer from acid to alkali form for intensive colored oils’ samples. Visual indication of the color transfer of phenol-phthalein as indicator (from colorless to pink) is quite difficult. The color transfer of thymolphthalein (from yellow to green) in such condition is not determined. Using of alkali blue 6B is complicated by the necessity of use ethanol and aromatic compounds mixture. In current work the rapid and simple method of acid value determination was proposed. It consists in alkali-acid titration of the sample by sodium butoxide solution in n-butanol with bromothymol blue, n-butanol is also using as solvent. The method was tested on 3 series of the mixtures of the refined sunflower oil and free fatty acids (distilled fatty acids of sunflower and rapeseed oils and chemical grade oleic acid). The fatty acid content in tested mixtures was in range 1-50 % wt. Some disadvantages of traditional methods, such as the necessity of mixed solvents’ and relatively complicated laboratory equipment use, titration in a hot state, effect of temperature changes in the laboratory and difficulties with visual indication of color transfer, were overcame. Proposed method requires only the simplest laboratory glassware (conic flasks, non-calibrated pipettes, hermetically sealed glass vessels for titrant) and technical laboratory scales (weighting accuracy ±0.01 g). The method allows to determine the acid value in wide range of samples, including the samples with intense coloration. The relatively high accuracy of acid value determination was shown. The method sensitivity is 0.02-0.10 mg KOH/g. The time for analyze is enough short (about 5-15 minutes).


2021 ◽  
pp. 84-91
Author(s):  
O. Spaska ◽  
◽  
AV.L. Chumak ◽  
M.R. Maksymyuk ◽  
V.M. Rudenko ◽  
...  

Highly efficient stable aerated hydrophilic compositions containing fluorotensides and ultralight microdisperse systems using gas-filled glass, aluminosilicate and polymer microspheres have been developed. Designing the compositions of PAS based on the surface activity of surfactants, their solubility in water and the ability to bind water and the formation of hydrogen bonds between the components. The main condition for the stability of the coating when mixing the components - the chemical interaction between them and the formation of a system that does not dissolve in hydrocarbons and does not break down in terms of use. The best film-forming characteristics necessary for the operation of the coating (simultaneous reduction of surface tension and film formation) active substances (FPAR), the non-polar part of the molecules of which contains a fluorocarbon chain, so they are insoluble in hydrocarbons, well soluble in water and easily distributed on the surface of hydrocarbon liquids, creating a protective film. The choice of co-surfactants was based on the ability to stabilize hydrophilic films on the surface of hydrocarbons not only at favorable HLB, but also at the lowest, although higher than the critical concentration of micelle formation (CCM), concentrations for forming a mixed adsorption layer of increased strength. This surfactant was water-oil-soluble twin-80, which will significantly increase the hydrophilic part and enhance the stability of the PAS and the stability of the aerated system. The introduction of glass microspheres into the components of the system has significantly enhanced its strength and stability. In the study of the stability and gas permeability of the developed surfactant systems, it was found that the insulating ability of the coating increases with increasing hydrophilic-lipophilic balance of the system and due to chemical interaction between the carboxyl group of fluorotenside and hydroxyl groups of surfactants.


2021 ◽  
pp. 17-40
Author(s):  
Yu.G. Voloshyna ◽  
◽  
O.P. Pertko ◽  

The review deals with main aspects of the toluene methylation reaction on basic catalysts. The side reactions of decomposition of methanol to CO and H2 on strong basic sites and ring alkylation of toluene on Lewis acid sites (cations of high polarizing ability) hinder obtaining high yields of the target products – styrene and ethylbenzene. Both types of sites are necessary for the course of the target reaction. So optimizing their strength and quantity is an important prerequisite for the selectivity of the side-chain alkylation catalysts. The advantage of fojasite-based systems for this reaction was confirmed by the works of many researchers. However, the possibilities of use of zeolites of other structural types and representatives of a new generation of molecular sieves are being studied, as well as ways of modifying such materials to increase their catalytic efficiency. The main direction of modification is to regulate the balance of acidity and basicity. Effective charge of framework oxygen atoms, which determines basicity of zeolite framework, increases due to the introduction of guest compounds into the catalyst, and this effect is more significant than influence on basicity of ion exchange for cations of elements of low electronegativity. However, the role of this method of modifying in increasing the selectivity remains crucial due to potentiality to decrease the Lewis acidity of cations. Compounds of other elements and transition metals also are used for modification, as well as promotion with metallic copper and silver. Techniques are applied, but not widely, to deprive the external surface of crystallites of active sites. This method of modification is effective for slowing down their deactivation by coke. Acid sites, in particular BAS, are most often distinguished among the sites responsible for coke formation. The mechanism of coke formation in the absence of such centers is also proposed. On the whole, this issue not fully disclosed and requires a deeper study.


2021 ◽  
pp. 62-68
Author(s):  
E.V. Polunkin ◽  
◽  
V.S. Pyliavskyi ◽  
O.O. Gaidai ◽  
S.L. Melnykova ◽  
...  

The work is devoted to elucidation of a general mechanism of action of exomodified carbon nanospheres (CNOs – Brn nanoonions) on different physicochemical and chemmotological properties of ethanol motor fuels. The formation of supramolecular solvate groups in organic media is explained by the participation of different forces of intermolecular interaction, the main of which are polarization and orientation, as well as donor-acceptor forces of interaction of nanospheres with the environment. The concept of creation in an organic medium of solvation formations - domains, the size of which, determined by the method of photon correlation laser spectroscopy, varies from 21 to 1000 nm, depending on the chemical nature of the solvent - is proposed and substantiated. For ethanol, the size of such formations was ~ 400 nm, which significantly exceeds the size of individual particles of the additive. It is established that to improve the operational characteristics of ethanol fuel it is enough to introduce low concentrations (10-3 - 10-2 %, wt.) of synthesized brominated nanoparticles. It is shown that the change of the microheterogeneous structure of fuels affects the change of its physicochemical and operational characteristics: the dielectric constant and hydrophobicity of the medium decrease, the saturated vapor pressure increases, which improves the starting properties of the fuel; hydrophobization of the environment helps to reduce the corrosive properties of ethanol fuel per unit, as a result of which additional introduction of a corrosion inhibitor is not required; the bearing capacity of the fuel in the presence of brominated nanoparticles increases by 1.5 times compared to the base fuel with a corresponding decrease in damage to the metal surface of the friction pairs. It is the rearrangement of the secondary supramolecular structure of fuels in the presence of brominated carbon nanospheres that explains the multifunctionality of their influence on the physicochemical and chemmotological properties of ethanol motor fuels.


2021 ◽  
pp. 55-61
Author(s):  
L.Yu. Bodachivska ◽  

This work conducts a technical analysis of the current production and consumption of vegetable oils and some of the oily byproducts to determine the potential feedstock for the synthesis of non-food-competitive surfactants and surfactant-based systems. It defines the concentrated phosphatides (phosphatidic sludge) as no-/low- value streams, appropriately suited for chemical valorisation. The study further creates biobased surfactants by amidation of phosphatidic sludge derived from refinery of sunflower and rapeseed oils with monoethanolamine, N-(2-hydroxyethyl)ethylenediamine, or N,N’-bis(2-hydroxyethyl)ethylenediamine, under the action of calcium hydroxide as catalyst in excellent yields (95–98 %). Besides waste remediation, the use of phosphatides enabled to create the mixed surfactant compositions, comprising fatty acid alkanolamides and calcium glycerolphosphatides with improved solubility in organic non-polar solvents. With new surfactants, there have been created reversed emulsion systems, which can be potentially applied to the development and exploitation of gas and oil deposits are recommended for drilling wells, the disclosure of productive strata; perforation of wells and development of productive layers; blockage of gas, gas condensate and oil wells; elimination of manifestations and flow of gas in wells; limitation and elimination of waterways; cleaning of the hollow zone of wells and intensification of the inflow of hydrocarbon raw materials, which have been tested in laboratory and experimental industrial conditions, and a significant part of them have been introduced or tested on gas condensate fields. Creation of coordinated, effective and economical actions that should be formed in the state energy policy of Ukraine would facilitate the development of oil and gas companies, namely: increase of own oil and gas production; maximizing the potential of energy saving; diversification of external sources of supply; approximation of the parameters of the oil and gas industry to the norms and standards of the European Union.


2021 ◽  
pp. 48-54
Author(s):  
O.O. Papeikin ◽  
◽  
L.Yu. Bodachivska ◽  
I.O. Venger ◽  
D.Z. Davitadze ◽  
...  

Phosphatide concentrates and waste cooking oils - wastes that do not find qualified use and sources of environmental pollution, on the one hand, and on the other - valuable raw materials for the production of lubricating materials, additives and surfactants. The paper demonstrates the possibility of using these wastes as components in technologies for obtaining hydrated calcium greases and surfactants. By saponification of phosphatide concentrates and waste cooking oils were obtained the dispersed phases of thixotropic systems and were investigated their rheological properties. Derivatives of phosphoric acid in the composition of greases form a stronger structural framework, which is characterized by increased melting point and tribological properties capable of operating in high-load friction points. Surfactants were obtained by amidation of phosphatide concentrates and waste cooking oils. Synthesized alkanolamides combine with almost all mineral and synthetic oils and based on them developed compositions of lubricating materials. Tests of these compositions shown that synthesized surfactants from waste prove as effective multifunctional additives. Due to the chelating groups -OH, -NH2, -CONH, -COOH, -PO(OH)2, hydrophobic chelate complexes are formed, which not only impart systems homogeneity, but also provide improved protective, antioxidant and tribochemical properties of oils and lubricating compositions. Bench tests of resistance to oxidation of lubricating compositions with amidated phosphatide concentrates conducted at a temperature of 150 ºC confirmed their inhibitory effect, which allows to recommend them for use in high-temperature greases.


Sign in / Sign up

Export Citation Format

Share Document