Design considerations of wing stabilized free-fall vehicles

1976 ◽  
Vol 23 (12) ◽  
pp. 1231-1240 ◽  
Author(s):  
A.C. Mortensen ◽  
R.E. Lange
Author(s):  
S.D. Smith ◽  
R.J. Spontak ◽  
D.H. Melik ◽  
S.M. Buehler ◽  
K.M. Kerr ◽  
...  

When blended together, homopolymers A and B will normally macrophase-separate into relatively large (≫1 μm) A-rich and B-rich phases, between which exists poor interfacial adhesion, due to a low entropy of mixing. The size scale of phase separation in such a blend can be reduced, and the extent of interfacial A-B contact and entanglement enhanced, via addition of an emulsifying agent such as an AB diblock copolymer. Diblock copolymers consist of a long sequence of A monomers covalently bonded to a long sequence of B monomers. These materials are surface-active and decrease interfacial tension between immiscible phases much in the same way as do small-molecule surfactants. Previous studies have clearly demonstrated the utility of block copolymers in compatibilizing homopolymer blends and enhancing blend properties such as fracture toughness. It is now recognized that optimization of emulsified ternary blends relies upon design considerations such as sufficient block penetration into a macrophase (to avoid block slip) and prevention of a copolymer multilayer at the A-B interface (to avoid intralayer failure).


Author(s):  
Y. Harada ◽  
K. Tsuno ◽  
Y. Arai

Magnetic objective lenses, from the point of view of pole piece geometry, can he roughly classified into two types, viz., symmetrical and asymmetrical. In the case of the former, the optical properties have been calculated by several authors1-3) and the results would appear to suggest that, in order to reduce the spherical and chromatic aberration coefficients, Cs and Cc, it is necessary to decrease the half-width value of the axial field distribution and to increase the peak flux density. The expressions for either minimum Cs or minimum Cc were presented in the form of ‘universal’ curves by Mulvey and Wallington4).


2003 ◽  
Author(s):  
Kimberly Erickson ◽  
Tracey E. Rizzuto

2020 ◽  
pp. 3-8
Author(s):  
L.F. Vitushkin ◽  
F.F. Karpeshin ◽  
E.P. Krivtsov ◽  
P.P. Krolitsky ◽  
V.V. Nalivaev ◽  
...  

The State special primary acceleration measurement standard for gravimetry (GET 190-2019), its composition, principle of operation and basic metrological characteristics are presented. This standard is on the upper level of reference for free-fall acceleration measurements. Its accuracy and reliability were improved as a result of optimisation of the adjustment procedures for measurement systems and its integration within the upgraded systems, units and modern hardware components. A special attention was given to adjusting the corrections applied to measurement results with respect to procedural, physical and technical limitations. The used investigation methods made it possibled to confirm the measurement range of GET 190-2019 and to determine the contributions of main sources of errors and the total value of these errors. The measurement characteristics and GET 90-2019 were confirmed by the results obtained from measurements of the absolute value of the free fall acceleration at the gravimetrical site “Lomonosov-1” and by their collation with the data of different dates obtained from measurements by high-precision foreign and domestic gravimeters. Topicality of such measurements ensues from the requirements to handle the applied problems that need data on parameters of the Earth gravitational field, to be adequately faced. Geophysics and navigation are the main fields of application for high-precision measurements in this field.


Sign in / Sign up

Export Citation Format

Share Document