Operation and maintenance of reverse osmosis water desalination plant of the Kuwait oil company

Desalination ◽  
1987 ◽  
Vol 63 ◽  
pp. 193-208
Author(s):  
ZubairM. Shallal
Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 377
Author(s):  
Federico Leon ◽  
Alejandro Ramos-Martin ◽  
Sebastian Ovidio Perez-Baez

The water situation in the Canary Islands has been a historical problem that has been sought to be solved in various ways. After years of work, efforts have focused on desalination of seawater to provide safe water mainly to citizens, agriculture, and tourism. Due to the high demand in the Islands, the Canary Islands was a pioneering place in the world in desalination issues, allowing the improvement of the techniques and materials used. There are a wide variety of technologies for desalination water, but nowadays the most used is reverse osmosis. Desalination has a negative part, the energy costs of producing desalinated water are high. To this we add the peculiarities of the electricity generation system in the Canary Islands, which generates more emissions per unit of energy produced compared to the peninsular generation system. In this study we have selected a desalination plant located on the island of Tenerife, specifically in the municipality of Granadilla de Abona, and once its technical characteristics have been known, the ecological footprint has been calculated. To do this we have had to perform some calculations such as the capacity to fix carbon dioxide per hectare in the Canary Islands, as well as the total calculation of the emissions produced in the generation of energy to feed the desalination plant.


2020 ◽  
Vol 135 ◽  
pp. 106729 ◽  
Author(s):  
Alanood A. Alsarayreh ◽  
M.A. Al-Obaidi ◽  
A.M. Al-Hroub ◽  
R. Patel ◽  
I.M. Mujtaba

Author(s):  
Hammad Siddiqui ◽  
Mariam Elnour ◽  
Nader Meskin ◽  
Syed Zaidi

Reverse Osmosis (RO) is an efficient and clean membrane-based technology for water desalination. This work presents a full-scale seawater reverse osmosis (SWRO) desalination plant simulator using MATLAB/Simulink that has been validated using the operational data from a local plant. It allows simulating the system behavior under different operating conditions with high flexibility and minimal cost.


2014 ◽  
Author(s):  
Jihun Kim ◽  
Karim Hamza ◽  
Mohamed El-Morsi ◽  
Ashraf O. Nassef ◽  
Sayed Metwalli ◽  
...  

Reverse osmosis (RO) is one of the main technologies for water desalination, which can be used in locations with water resources that have high salinity content (such as saline ground water or seawater) to produce fresh water. Energy requirement for RO is less than other desalination processes, but is in the form of electric power, which can be scarce as fresh water in in remote areas not connected to the grid. Fortunately, many areas with fresh water shortage due to lack of rainfall have abundant sunshine. The combination of solar power and RO desalination is attractive, but remote areas usually requires small modular units, which favors photovoltaic (PV) solar energy harvesting. It is important to consider the net cost-effectiveness of the system when designing the PV-RO desalination plant. Adding battery storage to a PV-RO system has the advantage of steadier operation, but is an additional cost whose real benefit is only realized with a larger PV array that can harvest more energy during daytime. This paper compares the net unit cost of fresh water for realistic scenarios of PV-RO systems with and without battery storage. A multi-level optimization approach previously developed by the authors for time-variant power PV-RO systems is adopted; a “sub-loop” optimization determines the operating pressure and flow rate given a fixed system configuration and instantaneous power input, while an “outer loop” optimizes the configuration of the desalination plant. The sub-loop optimization is done via an enumeration approach, while the outer loop is optimized via a mixed real-coded genetic algorithm (GA). A demonstration study shows a batteryless system being approx. 30% more expensive per unit fresh water production than a fully optimized battery-backed system. However, most of the cost of a batteryless system is in initial investment, which with 7% less annual operating cost, can present a plausible design choice for remote areas.


Author(s):  
Naiara Hernández-Ibáñez ◽  
Juan Arévalo ◽  
Vicente F. Mena ◽  
Victor Monsalvo-Garcia ◽  
Frank Rogalla

Abstract This chapter presents the construction, operation, and validation of all the MIDES systems, including water pre-treatment, wastewater pre-treatment, the microbial desalination cell (MDC), low-pressure reverse osmosis (RO), and post-treatment (remineralization and disinfection). MIDES technology has been validated with different water sources: brackish water from Demo Site 1, (Racons Brackish Water Desalination Plant (BWDP), located in Denia, Spain) and seawater from Demo Site 2 (Fonsalía Seawater Desalination Plant (SWDP), located in Guía de Isora, Spain). In this chapter, the preparation of both demo sites for the reception and installation of the pilot plants is also presented.


2020 ◽  
Vol 248 ◽  
pp. 119220 ◽  
Author(s):  
Alanood A. Alsarayreh ◽  
M.A. Al-Obaidi ◽  
A.M. Al-Hroub ◽  
R. Patel ◽  
I.M. Mujtaba

Desalination ◽  
2018 ◽  
Vol 443 ◽  
pp. 272-284 ◽  
Author(s):  
M.A. Al-Obaidi ◽  
A.A. Alsarayreh ◽  
A.M. Al-Hroub ◽  
S. Alsadaie ◽  
I.M. Mujtaba

Sign in / Sign up

Export Citation Format

Share Document