Calcium-dependent events at fertilization of the frog egg: Injection of a calcium buffer blocks ion channel opening, exocytosis, and formation of pronuclei

1988 ◽  
Vol 126 (2) ◽  
pp. 346-361 ◽  
Author(s):  
Douglas Kline
1997 ◽  
Vol 78 (6) ◽  
pp. 3371-3385 ◽  
Author(s):  
Victoria Booth ◽  
John Rinzel ◽  
Ole Kiehn

Booth, Victoria, John Rinzel, and Ole Kiehn. Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment. J. Neurophysiol. 78: 3371–3385, 1997. In contrast to the limited response properties observed under normal experimental conditions, spinal motoneurons generate complex firing patterns, such as Ca2+-dependent regenerative spiking and plateaus, in the presence of certain neurotransmitters and ion-channel blockers. We have developed a quantitative motoneuron model, based on turtle motoneuron data, toinvestigate the roles of specific ionic currents and the effects of their soma and dendritic distribution in generating these complex firing patterns. In addition, the model is used to explore the effects of multiple ion channel blockers and neurotransmitters that are known to modulate motoneuron firing patterns. To represent the distribution of ionic currents across the soma and dendrites, the model contains two compartments. The soma compartment, representing the soma and proximal dendrites, contains Hodgkin-Huxley-like sodium ( I Na) and delayed rectifier K+ ( I K−dr) currents, an N-like Ca2+ current ( I Ca−N), and a calcium-dependent K+ current [ I K(Ca)]. The dendritic compartment, representing the lumped distal dendrites, contains, in addition to I Ca−N and I K(Ca) as in the soma, a persistent L-like calcium current ( I Ca−L). We determined kinetic parameters for I Na, I K−dr, I Ca−N, and I K(Ca) in order to reproduce normal action-potential firing observed in turtle spinal motoneurons, including fast and slow afterhyperpolarizations (AHPs) and a linear steady-state frequency-current relation. With this parameter set as default, a sequence of pharmacological manipulations were systematically simulated. A small reduction of I K−dr [mimicking the experimental effect of tetraethylammonium (TEA) in low concentration] enhanced the slow AHP and caused calcium spiking (mediated by I Ca−N) when I Na was blocked. Firing patterns observed experimentally in high TEA [and tetrodotoxin (TTX)], namely calcium spikes riding on a calcium plateau, were reproduced only when both I K−dr and I K(Ca) were reduced. Dendritic plateau potentials, mediated by I Ca−L, were reliably unmasked when I K(Ca) was reduced, mimicking the experimental effect of the bee venom apamin. The effect of 5-HT, which experimentally induces the ability to generate calcium-dependent plateau potentials but not calcium spiking, was reproduced in the model by reducing I K(Ca) alone. The plateau threshold current level, however, was reduced substantially if a simultaneous increase in I Ca−L was simulated, suggesting that serotonin (5-HT) induces plateau potentials by regulating more than one conductance. The onset of the plateau potential showed significant delays in response to near-threshold, depolarizing current steps. In addition, the delay times were sensitive to the current step amplitude. The delay and its sensitivity were explained by examining the model's behavior near the threshold for plateau onset. This modeling study thus accurately accounts for the basic firing behavior of vertebrate motoneurons as well as a range of complex firing patterns invoked by ion-channel blockers and 5-HT. In addition, our computational results support the hypothesis that the electroresponsiveness of motoneurons depends on a nonuniform distribution of ionic conductances, and they predict modulatory effects of 5-HT and properties of plateau activation that have yet to be tested experimentally.


Toxins ◽  
2017 ◽  
Vol 9 (3) ◽  
pp. 109 ◽  
Author(s):  
Chattip Kurehong ◽  
Chalermpol Kanchanawarin ◽  
Busaba Powthongchin ◽  
Panchika Prangkio ◽  
Gerd Katzenmeier ◽  
...  

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Shane J Morley ◽  
Yanmei Qi ◽  
Loredana Iovino ◽  
Laura Andolfi ◽  
Da Guo ◽  
...  

At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the α-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking α-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, α-tubulin acetylation sets the force required for touch.


2005 ◽  
Vol 126 (1) ◽  
pp. 7-21 ◽  
Author(s):  
Frank T. Horrigan ◽  
Stefan H. Heinemann ◽  
Toshinori Hoshi

Large conductance calcium-dependent (Slo1 BK) channels are allosterically activated by membrane depolarization and divalent cations, and possess a rich modulatory repertoire. Recently, intracellular heme has been identified as a potent regulator of Slo1 BK channels (Tang, X.D., R. Xu, M.F. Reynolds, M.L. Garcia, S.H. Heinemann, and T. Hoshi. 2003. Nature. 425:531–535). Here we investigated the mechanism of the regulatory action of heme on heterologously expressed Slo1 BK channels by separating the influences of voltage and divalent cations. In the absence of divalent cations, heme generally decreased ionic currents by shifting the channel's G–V curve toward more depolarized voltages and by rendering the curve less steep. In contrast, gating currents remained largely unaffected by heme. Simulations suggest that a decrease in the strength of allosteric coupling between the voltage sensor and the activation gate and a concomitant stabilization of the open state account for the essential features of the heme action in the absence of divalent ions. At saturating levels of divalent cations, heme remained similarly effective with its influence on the G–V simulated by weakening the coupling of both Ca2+ binding and voltage sensor activation to channel opening. The results thus show that heme dampens the influence of allosteric activators on the activation gate of the Slo1 BK channel. To account for these effects, we consider the possibility that heme binding alters the structure of the RCK gating ring and thereby disrupts both Ca2+- and voltage-dependent gating as well as intrinsic stability of the open state.


2018 ◽  
Author(s):  
Koustav Maity ◽  
John Heumann ◽  
Aaron P McGrath ◽  
Noah J Kopcho ◽  
Po-Kai Hsu ◽  
...  

Sensing and responding to environmental water deficiencies is essential for the growth, development and survival of plants. Recently, an osmolality-sensing ion channel called OSCA1 was discovered that functions in sensing hyperosmolarity in Arabidopsis. Here, we report the cryo-EM structure and function of an ion channel from rice (Oryza stativa; OsOSCA1.2), showing how it mediates hyperosmolality sensing and ion permeability. The structure reveals a dimer, the molecular architecture of each subunit consists of eleven transmembrane helices and a cytosolic soluble domain that has homology to RNA recognition proteins. The transmembrane domain is structurally related to the TMEM16 family of calcium dependent ion channels and scramblases. The cytosolic soluble domain possesses a distinct structural feature in the form of extended intracellular helical arms parallel to the plasma membrane and well positioned to sense lateral tension on the inner leaflet of the lipid bilayer caused by changes in turgor pressure. Computational dynamic analysis suggests how this domain couples to the transmembrane domain to open the channel and HDX mass spectrometry experimentally confirmed the conformational dynamics of these coupled domains. The structure provides a framework to understand the structural basis of hyperosmolality sensing in crop plants, extending our knowledge of the anoctamin superfamily important for plants and fungi as well as structural mechanisms that can translate membrane stress to ion transporter regulation.


2016 ◽  
Vol 113 (43) ◽  
pp. E6696-E6703 ◽  
Author(s):  
Mieke Nys ◽  
Eveline Wijckmans ◽  
Ana Farinha ◽  
Özge Yoluk ◽  
Magnus Andersson ◽  
...  

Pentameric ligand-gated ion channels or Cys-loop receptors are responsible for fast inhibitory or excitatory synaptic transmission. The antipsychotic compound chlorpromazine is a widely used tool to probe the ion channel pore of the nicotinic acetylcholine receptor, which is a prototypical Cys-loop receptor. In this study, we determine the molecular determinants of chlorpromazine binding in the Erwinia ligand-gated ion channel (ELIC). We report the X-ray crystal structures of ELIC in complex with chlorpromazine or its brominated derivative bromopromazine. Unexpectedly, we do not find a chlorpromazine molecule in the channel pore of ELIC, but behind the β8–β9 loop in the extracellular ligand-binding domain. The β8–β9 loop is localized downstream from the neurotransmitter binding site and plays an important role in coupling of ligand binding to channel opening. In combination with electrophysiological recordings from ELIC cysteine mutants and a thiol-reactive derivative of chlorpromazine, we demonstrate that chlorpromazine binding at the β8–β9 loop is responsible for receptor inhibition. We further use molecular-dynamics simulations to support the X-ray data and mutagenesis experiments. Together, these data unveil an allosteric binding site in the extracellular ligand-binding domain of ELIC. Our results extend on previous observations and further substantiate our understanding of a multisite model for allosteric modulation of Cys-loop receptors.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Ramzi A Ockaili ◽  
Fadi Salloum ◽  
Christopher K Mehta ◽  
Richard C Franson ◽  
Rakesh C Kukreja

Background: The low-molecular-weight, calcium-dependent type IIA secretory phospholipase A 2 (sPLA 2 ) has been implicated in irreversible cell damage following ischemia-reperfusion (I/R) injury. We examined the protective effect of PX-18, a novel sPLA 2 inhibitor, during I/R in the heart. Since mitochondrial K ATP (mitoK ATP ) channel opening is an essential component of ischemic tolerance induced by preconditioning in hearts, we also interrogated the role of these channels in PX-18-induced protection. Methods and Results: Rabbits were treated with PX-18 (60 mg/kg ip) 30 min prior to 30 min of regional ischemia and 3 hrs of reperfusion. MitoK ATP channel blocker 5-hydroxydecanoate (5-HD, 5 mg/kg iv) was given 10 min before I/R. Infarct size (IS) was measured by computer morphometry of tetrazolium stained sections. IS (mean ± SE) was reduced in rabbits treated with PX-18 as compared to vehicle or non-treated controls (43% reduction)[Fig.1 ]. 5-HD blocked the protection of PX-18 as shown by an increase in IS. 5-HD alone had no effect on IS. Risk areas were not different among groups (not shown). Furthermore, PX-18 administration as an iv bolus (30 mg/kg) further reduced IS, both when given post-ischemia (55% reduction), and, importantly, when given 1 hr after reperfusion (61% reduction) [Fig. 1 ]. PX-18 had no significant effect on hemodynamics. Conclusion: These data suggest that PX-18 induces pharmacological preconditioning in the heart which is mediated by opening of mitoK ATP channels. Also, the drug was cardioprotective when administered after ischemia or 1 hr after reperfusion. We conclude that inhibition of sPLA2 is a powerful strategy to induce protection against I/R injury.


1993 ◽  
Vol 264 (3) ◽  
pp. C519-C526 ◽  
Author(s):  
T. Mito ◽  
N. A. Delamere ◽  
M. Coca-Prados

We performed 86Rb flux studies to examine Na-K-adenosinetriphosphatase (ATPase), Na-K-2Cl cotransporter, and potassium channel activity in an established cell line derived from human nonpigmented ciliary epithelium (ODM2). The elevation of intracellular calcium by A23187 (3 microM) or thapsigargin (200 nM) increased both ouabain-sensitive potassium (86Rb) uptake (Na-K-ATPase mediated) and ouabain-insensitive potassium (86Rb) uptake. The ouabain-insensitive component could be inhibited substantially by bumetanide (0.1 mM), suggesting the involvement of a Na-K-2Cl cotransporter. The increase of potassium (86Rb) uptake caused by thapsigargin could be prevented by the intracellular calcium buffer 1,2-bis(2-amino-phenoxy)ethane N,N,N',N'-tetraacetic acetoxymethyl ester (BAPTA/AM); in BAPTA/AM-treated cells, the thapsigargin stimulation of the bumetanide-sensitive portion of 86Rb uptake was abolished. After A23187 (5 microM), the 86Rb efflux rate was significantly increased; the increase could be blocked partially by quinidine (0.1 mM) and partially by bumetanide, suggesting that potassium channels and the Na-K-2Cl cotransporter contribute to the effect. We propose that the cell potassium loss after activation of quinidine-sensitive potassium channels is involved in the calcium-induced activation of Na-K-ATPase because 0.1 mM quinidine and 100 mM external potassium both markedly inhibited the A23187-induced increases of the ouabain-sensitive component of potassium (86Rb) uptake. Calcium-induced stimulation of the Na-K-2Cl cotransporter may not be linked to channel activation.


2006 ◽  
Vol 128 (1) ◽  
pp. 73-87 ◽  
Author(s):  
Jeff E. Angermann ◽  
Amy R. Sanguinetti ◽  
James L. Kenyon ◽  
Normand Leblanc ◽  
Iain A. Greenwood

The aim of the present study was to provide a mechanistic insight into how phosphatase activity influences calcium-activated chloride channels in rabbit pulmonary artery myocytes. Calcium-dependent Cl− currents (IClCa) were evoked by pipette solutions containing concentrations between 20 and 1000 nM Ca2+ and the calcium and voltage dependence was determined. Under control conditions with pipette solutions containing ATP and 500 nM Ca2+, IClCa was evoked immediately upon membrane rupture but then exhibited marked rundown to ∼20% of initial values. In contrast, when phosphorylation was prohibited by using pipette solutions containing adenosine 5′-(β,γ-imido)-triphosphate (AMP-PNP) or with ATP omitted, the rundown was severely impaired, and after 20 min dialysis, IClCa was ∼100% of initial levels. IClCa recorded with AMP-PNP–containing pipette solutions were significantly larger than control currents and had faster kinetics at positive potentials and slower deactivation kinetics at negative potentials. The marked increase in IClCa was due to a negative shift in the voltage dependence of activation and not due to an increase in the apparent binding affinity for Ca2+. Mathematical simulations were carried out based on gating schemes involving voltage-independent binding of three Ca2+, each binding step resulting in channel opening at fixed calcium but progressively greater “on” rates, and voltage-dependent closing steps (“off” rates). Our model reproduced well the Ca2+ and voltage dependence of IClCa as well as its kinetic properties. The impact of global phosphorylation could be well mimicked by alterations in the magnitude, voltage dependence, and state of the gating variable of the channel closure rates. These data reveal that the phosphorylation status of the Ca2+-activated Cl− channel complex influences current generation dramatically through one or more critical voltage-dependent steps.


Sign in / Sign up

Export Citation Format

Share Document