Mass-transfer rates at rough surfaces

1969 ◽  
Vol 14 (9) ◽  
pp. 909-919 ◽  
Author(s):  
M.G. Fouad ◽  
A.A. Zatout
Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 231
Author(s):  
Muhammad Awais ◽  
Saeed Ehsan Awan ◽  
Muhammad Asif Zahoor Raja ◽  
Nabeela Parveen ◽  
Wasim Ullah Khan ◽  
...  

Rheology of MHD bioconvective nanofluid containing motile microorganisms is inspected numerically in order to analyze heat and mass transfer characteristics. Bioconvection is implemented by combined effects of magnetic field and buoyancy force. Gyrotactic microorganisms enhance the heat and transfer as well as perk up the nanomaterials’ stability. Variable transport properties along with assisting and opposing flow situations are taken into account. The significant influences of thermophoresis and Brownian motion have also been taken by employing Buongiorno’s model of nanofluid. Lie group analysis approach is utilized in order to compute the absolute invariants for the system of differential equations, which are solved numerically using Adams-Bashforth technique. Validity of results is confirmed by performing error analysis. Graphical and numerical illustrations are prepared in order to get the physical insight of the considered analysis. It is observed that for controlling parameters corresponding to variable transport properties c2, c4, c6, and c8, the velocity, temperature, concentration, and bioconvection density distributions accelerates, respectively. While heat and mass transfer rates increases for convection parameter and bioconvection Rayleigh number, respectively.


1981 ◽  
Vol 103 (1) ◽  
pp. 3-6 ◽  
Author(s):  
J. E. White ◽  
C. J. Cremers

Experimental investigations of frost deposition under forced convection conditions have shown that in most cases heat and mass transfer rates become constant after an initial transient period. It is shown that, in such cases, approximately half of the mass transfer from a humid air stream to a frost layer diffuses inward, condenses and increases the density of the frost. The other half is deposited at the surface and increases the thickness of the layer. Approximate expressions for density and thickness of the frost layer are derived and compared with data from the literature and also with experimental work reported in this paper. The correlations are shown to work well for a broad range of experimental conditions.


1978 ◽  
Vol 86 (1) ◽  
pp. 49-65 ◽  
Author(s):  
R. C. Ackerberg ◽  
R. D. Patel ◽  
S. K. Gupta

The problem of heat transfer (or mass transfer at low transfer rates) to a strip of finite length in a uniform shear flow is considered. For small values of the Péclet number (based on wall shear rate and strip length), diffusion in the flow direction cannot be neglected as in the classical Leveque solution. The mathematical problem is solved by the method of matched asymptotic expansions and expressions for the local and overall dimensionless heat-transfer rate from the strip are found. Experimental data on wall mass-transfer rates in a tube at small Péclet numbers have been obtained by the well-known limiting-current method using potassium ferrocyanide and potassium ferricyanide in sodium hydroxide solution. The Schmidt number is large, so that a uniform shear flow can be assumed near the wall. Experimental results are compared with our theoretical predictions and the work of others, and the agreement is found to be excellent.


Sign in / Sign up

Export Citation Format

Share Document