frost layer
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 20)

H-INDEX

12
(FIVE YEARS 3)

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5991
Author(s):  
Christian J. L. Hermes ◽  
Joel Boeng ◽  
Diogo L. da Silva ◽  
Fernando T. Knabben ◽  
Andrew D. Sommers

Modern refrigerators are equipped with fan-supplied evaporators often tailor-made to mitigate the impacts of frost accretion, not only in terms of frost blocking, which depletes the cooling capacity and therefore the refrigerator coefficient of performance (COP), but also to allow optimal defrosting, thereby avoiding the undesired consequences of condensate retention and additional thermal loads. Evaporator design for frosting conditions can be done either empirically through trial-and-error approaches or using simulation models suitable to predict the distribution of the frost mass along the finned coil. Albeit the former is mandatory for robustness verification prior to product approval, it has been advocated that the latter speeds up the design process and reduces the costs of the engineering undertaking. Therefore, this article is aimed at summarizing the required foundations for the design of efficient evaporators and defrosting systems with minimized performance impacts due to frosting. The thermodynamics, and the heat and mass transfer principles involved in the frost nucleation, growth, and densification phenomena are presented. The thermophysical properties of frost, such as density and thermal conductivity, are discussed, and their relationship with refrigeration operating conditions are established. A first-principles model is presented to predict the growth of the frost layer on the evaporator surface as a function of geometric and operating conditions. The relation between the microscopic properties of frost and their macroscopic effects on the evaporator thermo-hydraulic performance is established and confirmed with experimental evidence. Furthermore, different defrost strategies are compared, and the concept of optimal defrost is formulated. Finally, the results are used to analyze the efficiency of the defrost operation based on the net cooling capacity of the refrigeration system for different duty cycles and evaporator geometries.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Bin Xia ◽  
Xianghua Xu ◽  
Xingang Liang

AbstractA newly developed frosting simulation method, p-VOF method, is applied to simulate the dynamic frost formation on the NACA0012 airfoil under strong convection. The p-VOF method is a pseudo VOF method of the multiphase flow simulation with phase change. By solving a simplified mass conservation equation explicitly instead of the original volume fraction equations in CFD software, the efficiency and robustness of calculation are greatly improved. This progress makes it possible to predict a long-time frost formation. The p-VOF method was successfully applied to the simulation of dynamic frosting on the two-dimensional NACA0012 airfoil under strong convection conditions with constant frost physical properties. The simulation result shows that the average thickness of the frost layer increases, and the frost bulges and flow separation appear earlier, when the airfoil surface temperature decreases or the air humidity increases. The frost bulges and flow separation appear earlier, when the air velocity is faster, the growth rate of the frost layer at the early stage is greater, but the final frost layer is thinner.


2021 ◽  
Author(s):  
Bin Xia ◽  
Xianghua Xu ◽  
Xingang Liang

Abstract A newly developed frosting simulation method, pseudo-VOF (p-VOF) method, has applied to simulate the dynamic frost formation on the NACA0012 airfoil under strong convection. The p-VOF method is a pseudo volume of fraction simulation method of the multiphase flow with phase change. By solving a simplified mass conservation equation explicitly instead of the original volume fraction equations in CFD software, the efficiency and robustness of calculation are greatly improved. This progress makes it possible to predict a long-time frost formation. The p-VOF method was successfully applied to the simulation of dynamic frosting on the two-dimensional NACA0012 airfoil under strong convection conditions with constant frost physical properties. The simulation result shows that the average thickness of the frost layer increases, and the frost bulges and flow separation appear earlier, when the airfoil surface temperature decreases or the air humidity increases. The frost bulges and flow separation appear earlier, when the air velocity is faster, the growth rate of the frost layer at the early stage is greater, but the final frost layer is thinner.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 256
Author(s):  
Li Jia ◽  
Jun Sun ◽  
Xiaoxiao Li ◽  
Xian Zhang ◽  
Lin Chen ◽  
...  

In this article, a simple synthesis method was applied to form a branch and tendril structure using hydroxyl-terminated silicone sol modified silica nanoparticles at high temperature, followed by mixing with fluoro-containing polyacrylate emulsion (PFA) to obtained a polydimethylsiloxane (PDMS)-SiO2/PFA hybrid coating. The hydrophobic performance of the PDMS-SiO2/PFA coating was further enhanced through the synergistic action of Si-O and F group. The obtained coating has a similar surface structure of lotus leaf and the contact angle can reach 142.2 ± 2.4°. The PDMS-SiO2/PFA coating could delay the formation of frost crystal and the growth of frost layer. The defrosting droplets were difficult to adhere on the coating and could be easily rolled off for long frosting and defrosting cycles, which indicates the potential application of this coating in the field of frost suppression.


Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1051
Author(s):  
Li Jia ◽  
Jun Sun ◽  
Xiaoxiao Li ◽  
Xian Zhang ◽  
Lin Chen ◽  
...  

Polydimethylsiloxane modified SiO2/organic silicon sol (PDMS-SiO2/SS) hybrid coating was synthesized via a simple two-step modification route. The nanoparticles (NPs) of PDMS-SiO2 were synthesized through a high temperature dehydration reaction by using silica and excessive PDMS. The NPs lapped with each other and formed a branch and tendril structure. Organic silicon sol (SS) added as basement introduced a hydrophobic group and protected the structure of the NPs. The PDMS-SiO2/SS hybrid coating exhibits a superhydrophobic performance with a maximum water contact angle of 152.82°. The frost test was carried out on a refrigerator evaporator, and the results showed that the coating did not merely delay the frost crystal time about 113 min but also increased the frost layer process time. Meanwhile, the defrosted water droplets rolled off from the coated surface easily which is a benefit for frost suppression performance of the next refrigeration cycle.


Cryogenics ◽  
2020 ◽  
Vol 109 ◽  
pp. 103115
Author(s):  
Lemei Ren ◽  
Wenling Jiao ◽  
Xinghao Tian ◽  
Tianjie Liu

Sign in / Sign up

Export Citation Format

Share Document