Metabolic labeling of normal canine rod outer segment phospholipids in vivo and in vitro

1989 ◽  
Vol 48 (1) ◽  
pp. 149-160 ◽  
Author(s):  
Mary G. Wetzel ◽  
Christian Fahlman ◽  
James P. Alligood ◽  
Paul J. O'Brien ◽  
Gustavo D. Aguirre
2003 ◽  
Vol 374 (2) ◽  
pp. 537-543 ◽  
Author(s):  
Ryan A. ADAMS ◽  
Xinran LIU ◽  
David S. WILLIAMS ◽  
Alexandra C. NEWTON

Phosphorylation of rhodopsin critically controls the visual transduction cascade by uncoupling it from the G-protein transducin. The kinase primarily responsible for this phosphorylation is rhodopsin kinase, a substrate-regulated kinase that phosphorylates light-activated rhodopsin. Protein kinase C has been implicated in controlling the phosphorylation of both light-activated and dark-adapted rhodopsin. Two of the major rhodopsin phosphorylation sites in vivo, Ser334 and Ser338, are effective protein kinase C phosphorylation sites in vitro, while the latter is preferentially phosphorylated by rhodopsin kinase in vitro. Using phosphospecific antibodies against each of these two sites, we show that both sites are under differential spatial and temporal regulation. Exposure of mice to light results in rapid phosphorylation of Ser338 that is evenly distributed along the rod outer segment. Phosphorylation of Ser334 is considerably slower, begins at the base of the rod outer segment, and spreads to the top of the photoreceptor over time. In addition, we show that phosphorylation of both sites is abolished in rhodopsin kinase−/− mice, revealing an absolute requirement for rhodopsin kinase to phosphorylate rhodopsin. This requirement may reflect the need for priming phosphorylations at rhodopsin kinase sites allowing for subsequent phosphorylation by protein kinase C at Ser334. In this regard, treatment of mouse retinas with phorbol esters results in a 4-fold increase in phosphorylation on Ser334, with no significant effect on the phosphorylation of Ser338. Our results are consistent with light triggering rapid priming phosphorylations of rhodopsin by rhodopsin kinase, followed by a slower phosphorylation on Ser334, which is regulated by protein kinase C.


2013 ◽  
Vol 288 (23) ◽  
pp. 16506-16517 ◽  
Author(s):  
Sílvia Sanz ◽  
Giulia Bandini ◽  
Diego Ospina ◽  
Maria Bernabeu ◽  
Karina Mariño ◽  
...  

Carbohydrate structures play important roles in many biological processes, including cell adhesion, cell-cell communication, and host-pathogen interactions. Sugar nucleotides are activated forms of sugars used by the cell as donors for most glycosylation reactions. Using a liquid chromatography-tandem mass spectrometry-based method, we identified and quantified the pools of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, GDP-mannose, and GDP-fucose in Plasmodium falciparum intraerythrocytic life stages. We assembled these data with the in silico functional reconstruction of the parasite metabolic pathways obtained from the P. falciparum annotated genome, exposing new active biosynthetic routes crucial for further glycosylation reactions. Fucose is a sugar present in glycoconjugates often associated with recognition and adhesion events. Thus, the GDP-fucose precursor is essential in a wide variety of organisms. P. falciparum presents homologues of GDP-mannose 4,6-dehydratase and GDP-l-fucose synthase enzymes that are active in vitro, indicating that most GDP-fucose is formed by a de novo pathway that involves the bioconversion of GDP-mannose. Homologues for enzymes involved in a fucose salvage pathway are apparently absent in the P. falciparum genome. This is in agreement with in vivo metabolic labeling experiments showing that fucose is not significantly incorporated by the parasite. Fluorescence microscopy of epitope-tagged versions of P. falciparum GDP-mannose 4,6-dehydratase and GDP-l-fucose synthase expressed in transgenic 3D7 parasites shows that these enzymes localize in the cytoplasm of P. falciparum during the intraerythrocytic developmental cycle. Although the function of fucose in the parasite is not known, the presence of GDP-fucose suggests that the metabolite may be used for further fucosylation reactions.


2015 ◽  
Vol 59 (6) ◽  
pp. 3271-3280 ◽  
Author(s):  
Luiz Francisco Rocha e Silva ◽  
Karla Lagos Nogueira ◽  
Ana Cristina da Silva Pinto ◽  
Alejandro Miguel Katzin ◽  
Rodrigo A. C. Sussmann ◽  
...  

ABSTRACT4-Nerolidylcatechol (1) is an abundant antiplasmodial metabolite that is isolated fromPiper peltatumroots.O-Acylation orO-alkylation of compound1provides derivatives exhibiting improved stability and significantin vitroantiplasmodial activity. The aim of this work was to study thein vitroinhibition of hemozoin formation, inhibition of isoprenoid biosynthesis inPlasmodium falciparumcultures, andin vivoantimalarial activity of several 4-nerolidylcatechol derivatives. 1,2-O,O-Diacetyl-4-nerolidylcatechol (2) inhibitedin vitrohemozoin formation by up to 50%. In metabolic labeling studies using [1-(n)-3H]geranylgeranyl pyrophosphate, diester2significantly inhibited the biosynthesis of isoprenoid metabolites ubiquinone8, menaquinone4, and dolichol12in cultures ofP. falciparum3D7. Similarly, 2-O-benzyl-4-nerolidylcatechol (3) significantly inhibited the biosynthesis of dolichol12.P. falciparumin vitroprotein synthesis was not affected by compounds2or3. At oral doses of 50 mg per kg of body weight per day, compound2suppressedPlasmodium bergheiNK65 in infected BALB/c mice by 44%. Thisin vivoresult for derivative2represents marked improvement over that obtained previously for natural product1. Compound2was not detected in mouse blood 1 h after oral ingestion or in mixtures with mouse blood/blood plasmain vitro. However, it was detected afterin vitrocontact with human blood or blood plasma. Derivatives of 4-nerolidylcatechol exhibit parasite-specific modes of action, such as inhibition of isoprenoid biosynthesis and inhibition of hemozoin formation, and they therefore merit further investigation for their antimalarial potential.


1996 ◽  
Vol 270 (5) ◽  
pp. C1362-C1369 ◽  
Author(s):  
S. H. Brand ◽  
E. J. Holtzman ◽  
D. A. Scher ◽  
D. A. Ausiello ◽  
J. L. Stow

Heterotrimeric G protein alpha-subunits localized on the cytoplasmic face of Golgi membranes are involved in regulating vesicle trafficking and protein secretion. We investigated the role of myristoylation in attachment of the G alpha i-3 subunit to Golgi membranes. G alpha i-3 was epitope-tagged by insertion of a FLAG sequence at an NH2-terminal site predicted to interfere with myristoylation, and the resulting NT-alpha i-3 construct was stably transfected and expressed in polarized epithelial LLC-PK1 cells. Metabolic labeling confirmed that the translation product of NT-alpha i-3 was not myristoylated. In contrast to endogenous G alpha 1-3, which is tightly bound to Golgi membranes, the unmyristoylated FLAG-tagged NT-alpha i-3 did not attach to membranes; it was localized by immunofluorescence in the cytoplasm of LLC-PK1 cells and was detected only in the cytosol fraction of cell homogenates. Pertussis toxin-dependent ADP-ribosylation was used to test the ability of NT-alpha i-3 to interact with membrane-bound beta gamma-subunits. In both in vitro and in vivo assays, cytosolic NT-alpha i-3 alone was not ADP-ribosylated, although in the presence of membranes it could interact with G beta gamma-subunits to form heterotrimers. The expression of NT-alpha i-3 in LLC-PK1 cells altered the rate of basolateral secretion of sulfated proteoglycans, consistent with the demonstrated function of endogenous G alpha i-3. These data are consistent with a model in which G alpha i-3 utilizes NH2-terminal myristoylation to bind to Golgi membranes and to maximize its interaction with G beta gamma-subunits. Furthermore, our results show that stable attachment of G alpha i-3 to Golgi membranes is not required for it to participate as a regulatory element in vesicle trafficking in the secretory pathway.


1986 ◽  
Vol 102 (6) ◽  
pp. 2006-2014 ◽  
Author(s):  
M C Dabauvalle ◽  
W W Franke

A method to examine the diffusible state and the sizes of major cytoplasmic proteins in a living cell is described. Small (40-300 microns) commercially available gel filtration beads of a broad range of Mr exclusion limits were microsurgically implanted into the cytoplasm of oocytes of the frog, Xenopus laevis, usually after metabolic labeling of oocyte proteins with [35S]methionine. After equilibration in vivo for several hours, the appearance of the implanted cells, notably the bead-cytoplasm boundary, was examined by light and electron microscopy of sections and found to be unaffected. After incubation the beads were isolated, briefly rinsed, and their protein contents examined by one- or two-dimensional gel electrophoresis. We show that diffusible proteins can be identified by their inclusion in the pores of the gel filtration beads used and that their approximate sizes can be estimated from the size exclusion values of the specific materials used. The application of this method to important cell biological questions is demonstrated by showing that several "karyophobic proteins," i.e., proteins of the cytosolic fraction which accumulate in the cytoplasm in vivo, are indeed diffusible in the living oocyte and appear with sizes similar to those determined in vitro. This indicates that the nucleo-cytoplasmic distribution of certain diffusible proteins is governed, in addition to size exclusion at nuclear pore complexes and karyophilic "signals," by other, as yet unknown forces. Some possible applications of this method of gel filtration in vivo are discussed.


1994 ◽  
Vol 126 (6) ◽  
pp. 1421-1431 ◽  
Author(s):  
A L Hitt ◽  
T H Lu ◽  
E J Luna

We have cloned and sequenced ponticulin, a 17,000-dalton integral membrane glycoprotein that binds F-actin and nucleates actin assembly. A single copy gene encodes a developmentally regulated message that is high during growth and early development, but drops precipitously during cell streaming at approximately 8 h of development. The deduced amino acid sequence predicts a protein with a cleaved NH2-terminal signal sequence and a COOH-terminal glycosyl anchor. These predictions are supported by amino acid sequencing of mature ponticulin and metabolic labeling with glycosyl anchor components. Although no alpha-helical membrane-spanning domains are apparent, several hydrophobic and/or sided beta-strands, each long enough to traverse the membrane, are predicted. Although its location on the primary sequence is unclear, an intracellular domain is indicated by the existence of a discontinuous epitope that is accessible to antibody in plasma membranes and permeabilized cells, but not in intact cells. Such a cytoplasmically oriented domain also is required for the demonstrated role of ponticulin in binding actin to the plasma membrane in vivo and in vitro (Hitt, A. L., J. H. Hartwig, and E. J. Luna. 1994. Ponticulin is the major high affinity link between the plasma membrane and the cortical actin network in Dictyostelium. J. Cell Biol. 126:1433-1444). Thus, ponticulin apparently represents a new category of integral membrane proteins that consists of proteins with both a glycosyl anchor and membrane-spanning peptide domain(s).


Sign in / Sign up

Export Citation Format

Share Document