scholarly journals In VivoAntimalarial Activity and Mechanisms of Action of 4-Nerolidylcatechol Derivatives

2015 ◽  
Vol 59 (6) ◽  
pp. 3271-3280 ◽  
Author(s):  
Luiz Francisco Rocha e Silva ◽  
Karla Lagos Nogueira ◽  
Ana Cristina da Silva Pinto ◽  
Alejandro Miguel Katzin ◽  
Rodrigo A. C. Sussmann ◽  
...  

ABSTRACT4-Nerolidylcatechol (1) is an abundant antiplasmodial metabolite that is isolated fromPiper peltatumroots.O-Acylation orO-alkylation of compound1provides derivatives exhibiting improved stability and significantin vitroantiplasmodial activity. The aim of this work was to study thein vitroinhibition of hemozoin formation, inhibition of isoprenoid biosynthesis inPlasmodium falciparumcultures, andin vivoantimalarial activity of several 4-nerolidylcatechol derivatives. 1,2-O,O-Diacetyl-4-nerolidylcatechol (2) inhibitedin vitrohemozoin formation by up to 50%. In metabolic labeling studies using [1-(n)-3H]geranylgeranyl pyrophosphate, diester2significantly inhibited the biosynthesis of isoprenoid metabolites ubiquinone8, menaquinone4, and dolichol12in cultures ofP. falciparum3D7. Similarly, 2-O-benzyl-4-nerolidylcatechol (3) significantly inhibited the biosynthesis of dolichol12.P. falciparumin vitroprotein synthesis was not affected by compounds2or3. At oral doses of 50 mg per kg of body weight per day, compound2suppressedPlasmodium bergheiNK65 in infected BALB/c mice by 44%. Thisin vivoresult for derivative2represents marked improvement over that obtained previously for natural product1. Compound2was not detected in mouse blood 1 h after oral ingestion or in mixtures with mouse blood/blood plasmain vitro. However, it was detected afterin vitrocontact with human blood or blood plasma. Derivatives of 4-nerolidylcatechol exhibit parasite-specific modes of action, such as inhibition of isoprenoid biosynthesis and inhibition of hemozoin formation, and they therefore merit further investigation for their antimalarial potential.

2011 ◽  
Vol 56 (2) ◽  
pp. 703-707 ◽  
Author(s):  
Sergio Wittlin ◽  
Eric Ekland ◽  
J Carl Craft ◽  
Julie Lotharius ◽  
Ian Bathurst ◽  
...  

ABSTRACTWith the emergence ofPlasmodium falciparuminfections exhibiting increased parasite clearance times in response to treatment with artemisinin-based combination therapies, the need for new therapeutic agents is urgent. Solithromycin, a potent new fluoroketolide currently in development, has been shown to be an effective, broad-spectrum antimicrobial agent. Malarial parasites possess an unusual organelle, termed the apicoplast, which carries a cryptic genome of prokaryotic origin that encodes its own translation and transcription machinery. Given the similarity of apicoplast and bacterial ribosomes, we have examined solithromycin for antimalarial activity. Other antibiotics known to target the apicoplast, such as the macrolide azithromycin, demonstrate a delayed-death effect, whereby treated asexual blood-stage parasites die in the second generation of drug exposure. Solithromycin demonstrated potentin vitroactivity against the NF54 strain ofP. falciparum, as well as against two multidrug-resistant strains, Dd2 and 7G8. The dramatic increase in potency observed after two generations of exposure suggests that it targets the apicoplast. Solithromycin also retained potency against azithromycin-resistant parasites derived from Dd2 and 7G8, although these lines did demonstrate a degree of cross-resistance. In anin vivomodel ofP. bergheiinfection in mice, solithromycin demonstrated a 100% cure rate when administered as a dosage regimen of four doses of 100 mg/kg of body weight, the same dose required for artesunate or chloroquine to achieve 100% cure rates in this rodent malaria model. These promisingin vitroandin vivodata support further investigations into the development of solithromycin as an antimalarial agent.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Letícia Tiburcio Ferreira ◽  
Juliana Rodrigues ◽  
Gustavo Capatti Cassiano ◽  
Tatyana Almeida Tavella ◽  
Kaira Cristina Peralis Tomaz ◽  
...  

ABSTRACT Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii. Transmission-blocking activity was observed for epirubicin in vitro and in vivo. Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.


2012 ◽  
Vol 56 (6) ◽  
pp. 3207-3215 ◽  
Author(s):  
Katrin Ingram ◽  
William Ellis ◽  
Jennifer Keiser

ABSTRACTInteresting antischistosomal properties have been documented for the antimalarial mefloquine, a 4-quinolinemethanol. We evaluated the antischistosomal activities of nine mefloquine-related compounds belonging to the 4-pyridinemethanols, 9-phenanthrenmethanols, and 4-quinolinemethanols. Eight compounds revealed high activities againstSchistosoma mansoni in vitro, with two drugs (the 4-quinolinemethanols WR7573 and WR7930) characterized by significantly lower half-maximal inhibitory concentrations (IC50s) (2.7 and 3.5 μM, respectively) compared to mefloquine (11.4 μM). Mefloquine and WR7930 showed significantly decreased IC50s when incubated in the presence of hemoglobin. High worm burden reductions (WBR) were obtained with enpiroline (WBR, 82.7%; dosage, 200 mg/kg of body weight) and itsthreoisomers (+)-threo(WBR, 100%) and (−)-threo(WBR, 89%) and with WR7930 (WBR, 87%; dosage, 100 mg/kg) against adultS. mansoniin mice. Furthermore, excellentin vitroandin vivoantischistosomal activity was observed for two WR7930-related structures (WR29252 and WR7524). In addition, mefloquine (WBR, 81%), enpiroline (WBR, 77%), and WR7930 (WBR, 100%) showed high activities againstS. haematobiumharbored in mice following single oral doses of 200 mg/kg. These results provide a deeper insight into the structural features of the arylmethanols that rule antischistosomal activity. Further studies should be launched with enpiroline and WR7930.


2012 ◽  
Vol 56 (7) ◽  
pp. 3849-3856 ◽  
Author(s):  
Subathdrage D. M. Sumanadasa ◽  
Christopher D. Goodman ◽  
Andrew J. Lucke ◽  
Tina Skinner-Adams ◽  
Ishani Sahama ◽  
...  

ABSTRACTHistone deacetylase (HDAC) enzymes posttranslationally modify lysines on histone and nonhistone proteins and play crucial roles in epigenetic regulation and other important cellular processes. HDAC inhibitors (e.g., suberoylanilide hydroxamic acid [SAHA; also known as vorinostat]) are used clinically to treat some cancers and are under investigation for use against many other diseases. Development of new HDAC inhibitors for noncancer indications has the potential to be accelerated by piggybacking onto cancer studies, as several HDAC inhibitors have undergone or are undergoing clinical trials. One such compound, SB939, is a new orally active hydroxamate-based HDAC inhibitor with an improved pharmacokinetic profile compared to that of SAHA. In this study, thein vitroandin vivoantiplasmodial activities of SB939 were investigated. SB939 was found to be a potent inhibitor of the growth ofPlasmodium falciparumasexual-stage parasitesin vitro(50% inhibitory concentration [IC50], 100 to 200 nM), causing hyperacetylation of parasite histone and nonhistone proteins. In combination with the aspartic protease inhibitor lopinavir, SB939 displayed additive activity. SB939 also potently inhibited thein vitrogrowth of exoerythrocytic-stagePlasmodiumparasites in liver cells (IC50, ∼150 nM), suggesting that inhibitor targeting to multiple malaria parasite life cycle stages may be possible. In an experimentalin vivomurine model of cerebral malaria, orally administered SB939 significantly inhibitedP. bergheiANKA parasite growth, preventing development of cerebral malaria-like symptoms. These results identify SB939 as a potent new antimalarial HDAC inhibitor and underscore the potential of investigating next-generation anticancer HDAC inhibitors as prospective new drug leads for treatment of malaria.


2014 ◽  
Vol 58 (9) ◽  
pp. 5466-5472 ◽  
Author(s):  
Isabel Meister ◽  
Katrin Ingram-Sieber ◽  
Noemi Cowan ◽  
Matthew Todd ◽  
Murray N. Robertson ◽  
...  

ABSTRACTA racemic mixture ofRandSenantiomers of praziquantel (PZQ) is currently the treatment of choice for schistosomiasis. Though theSenantiomer and the metabolites are presumed to contribute only a little to the activity of the drug, in-depth side-by-side studies are lacking. The aim of this study was to investigate thein vitroactivities of PZQ and its main metabolites, namely,R- andS-cis- andR- andS-trans-4′-hydroxypraziquantel, against adult worms and newly transformed schistosomula (NTS). Additionally, we explored thein vivoactivity and hepatic shift (i.e., the migration of the worms to the liver) produced by each PZQ enantiomer in mice. Fifty percent inhibitory concentrations ofR-PZQ,S-PZQ, andR-trans- andR-cis-4′-hydroxypraziquantel of 0.02, 5.85, 4.08, and 2.42 μg/ml, respectively, for adultS. mansoniwere determinedin vitro. S-trans- andS-cis-4′-hydroxypraziquantel were not active at 100 μg/ml. These results are consistent with microcalorimetry data and studies with NTS.In vivo, single 400-mg/kg oral doses ofR-PZQ andS-PZQ achieved worm burden reductions of 100 and 19%, respectively. Moreover, worms treatedin vivowithS-PZQ displayed an only transient hepatic shift and returned to the mesenteric veins within 24 h. Our data confirm thatR-PZQ is the main effector molecule, whileS-PZQ and the metabolites do not play a significant role in the antischistosomal properties of PZQ.


2013 ◽  
Vol 58 (3) ◽  
pp. 1789-1792 ◽  
Author(s):  
Ying Zhou ◽  
Alina Fomovska ◽  
Stephen Muench ◽  
Bo-Shiun Lai ◽  
Ernest Mui ◽  
...  

ABSTRACTHere, we show that spiroindolone, an effective treatment for plasmodia, is also active againstToxoplasma gondiitachyzoites.In vitro, spiroindolone NITD609 is cidal for tachyzoites (50% inhibitory concentration [IC50], 1μM) and not toxic to human cells at ≥10μM. Two daily oral doses of 100 mg/kg of body weight reduced the parasite burden in mice by 90% (P= 0.002), measured 3 days after the last dose. This inhibition ofT. gondiitachyzoitesin vitroandin vivoindicates that spiroindolone is a promising lead candidate for further medicine development.


2012 ◽  
Vol 56 (4) ◽  
pp. 2191-2193 ◽  
Author(s):  
Akiko Kimura ◽  
Hiroshi Nishikawa ◽  
Nobuhiko Nomura ◽  
Junichi Mitsuyama ◽  
Shinya Fukumoto ◽  
...  

ABSTRACTT-2307, a novel arylamidine, has been shown to exhibit broad-spectrum antifungal activities against clinically significant pathogens. Here, we evaluated thein vitroandin vivoantimalarial activity of T-2307. The 50% inhibitory concentrations (IC50s) of T-2307 againstPlasmodium falciparumFCR-3 and K-1 strains were 0.47 and 0.17 μM, respectively. T-2307 at 2.5 to 10 mg/kg of body weight/day exhibited activity against blood stage and liver stage parasites in rodent malaria models. In conclusion, T-2307 exhibitedin vitroandin vivoantimalarial activity.


2015 ◽  
Vol 59 (12) ◽  
pp. 7249-7254 ◽  
Author(s):  
Lisa F. Shubitz ◽  
Hien T. Trinh ◽  
John N. Galgiani ◽  
Maria L. Lewis ◽  
Annette W. Fothergill ◽  
...  

ABSTRACTCoccidioidomycosis, or valley fever, is a growing health concern endemic to the southwestern United States. Safer, more effective, and more easily administered drugs are needed especially for severe, chronic, or unresponsive infections. The novel fungal CYP51 inhibitor VT-1161 demonstratedin vitroantifungal activity, with MIC50and MIC90values of 1 and 2 μg/ml, respectively, against 52Coccidioidesclinical isolates. In the initial animal study, oral doses of 10 and 50 mg/kg VT-1161 significantly reduced fungal burdens and increased survival time in a lethal respiratory model in comparison with treatment with a placebo (P< 0.001). Oral doses of 25 and 50 mg/kg VT-1161 were similarly efficacious in the murine central nervous system (CNS) model compared to placebo treatment (P< 0.001). All comparisons with the positive-control drug, fluconazole at 50 mg/kg per day, demonstrated either statistical equivalence or superiority of VT-1161. VT-1161 treatment also prevented dissemination of infection from the original inoculation site to a greater extent than fluconazole. Many of thesein vivoresults can be explained by the long half-life of VT-1161 leading to sustained high plasma levels. Thus, the efficacy and pharmacokinetics of VT-1161 are attractive characteristics for long-term treatment of this serious fungal infection.


2016 ◽  
Vol 60 (7) ◽  
pp. 4217-4228 ◽  
Author(s):  
Souvik Sarkar ◽  
Asim A. Siddiqui ◽  
Shubhra J. Saha ◽  
Rudranil De ◽  
Somnath Mazumder ◽  
...  

ABSTRACTWe synthesized a new series of conjugated hydrazones that were found to be active against malaria parasitein vitro, as well asin vivoin a murine model. These hydrazones concentration-dependently chelated free iron and offered antimalarial activity. Upon screening of the synthesized hydrazones, compound 5f was found to be the most active iron chelator, as well as antiplasmodial. Compound 5f also interacted with free heme (KD[equilibrium dissociation constant] = 1.17 ± 0.8 μM), an iron-containing tetrapyrrole released after hemoglobin digestion by the parasite, and inhibited heme polymerization by parasite lysate. Structure-activity relationship studies indicated that a nitrogen- and sulfur-substituted five-membered aromatic ring present within the benzothiazole hydrazones might be responsible for their antimalarial activity. The dose-dependent antimalarial and heme polymerization inhibitory activities of the lead compound 5f were further validated by following [3H]hypoxanthine incorporation and hemozoin formation in parasite, respectively. It is worth mentioning that compound 5f exhibited antiplasmodial activityin vitroagainst a chloroquine/pyrimethamine-resistant strain ofPlasmodium falciparum(K1). We also evaluatedin vivoantimalarial activity of compound 5f in a murine model where a lethal multiple-drug-resistant strain ofPlasmodium yoeliiwas used to infect Swiss albino mice. Compound 5f significantly suppressed the growth of parasite, and the infected mice experienced longer life spans upon treatment with this compound. Duringin vitroandin vivotoxicity assays, compound 5f showed minimal alteration in biochemical and hematological parameters compared to control. In conclusion, we identified a new class of hydrazone with therapeutic potential against malaria.


2014 ◽  
Vol 59 (1) ◽  
pp. 690-692 ◽  
Author(s):  
Nathan P. Wiederhold ◽  
Laura K. Najvar ◽  
Annette W. Fothergill ◽  
Dora I. McCarthy ◽  
Rosie Bocanegra ◽  
...  

ABSTRACTThein vitroandin vivoactivity of the inositol acyltransferase inhibitor E1210 was evaluated against echinocandin-resistantCandida albicans. E1210 demonstrated potentin vitroactivity, and in mice with invasive candidiasis caused by echinocandin-resistantC. albicans, oral doses of 10 and 40 mg E1210/kg of body weight twice daily significantly improved survival and reduced fungal burden compared to those of controls and mice treated with caspofungin (10 mg/kg/day). These results demonstrate the potential use of E1210 against resistantC. albicansinfections.


Sign in / Sign up

Export Citation Format

Share Document