Muscarinic M2-receptors enhance polyphosphoinositol release in rat gastric mucosal cells

FEBS Letters ◽  
1986 ◽  
Vol 204 (2) ◽  
pp. 352-356 ◽  
Author(s):  
Andreas Pfeiffer ◽  
Gustav Paumgartner ◽  
Albert Herz
1979 ◽  
Vol 34 (1-2) ◽  
pp. 90-95 ◽  
Author(s):  
Fouad M. Fouad ◽  
D. Waldron-Edward

Abstract The results show that incubation of gastric mucosal cells from rat at pH ~4.5 or in the presence of aspirin is associated with a specific increase in the activity of some acid-hydrolases. Intracellular glycoproteins, isolated by non-degradative techniques from rat or dog fundic mucosal cells, were found to be potential bio-substrates for these acid-hydrolyses. This may suggest that cleavage of the carbohydrate moieties of the intracellular and mucosal cell wall glycoproteins is a fundamental step in the development of gastric ulceration. A model for gastric lesions is proposed and discussed in the light of the results obtained.


1995 ◽  
Vol 30 (2) ◽  
pp. 135-141 ◽  
Author(s):  
Yoshikazu Kinoshita ◽  
Sazzad Hassan ◽  
Hirohisa Nakata ◽  
Masakyo Asahara ◽  
Yumi Matsushima ◽  
...  

Life Sciences ◽  
1997 ◽  
Vol 61 (16) ◽  
pp. PL243-PL248 ◽  
Author(s):  
Beáta Bódis ◽  
Oszkár Karádi ◽  
Péter Németh ◽  
Csaba Dohoczky ◽  
Marko Kolega ◽  
...  

2005 ◽  
Vol 73 (10) ◽  
pp. 6311-6321 ◽  
Author(s):  
Calin Stoicov ◽  
Xun Cai ◽  
Hanchen Li ◽  
Kristine Klucevsek ◽  
Jane Carlson ◽  
...  

ABSTRACT Escape from normal apoptotic controls is thought to be essential for the development of cancer. During Helicobacter pylori infection, the leading cause of gastric cancer, activation of the Fas antigen (Fas Ag) apoptotic pathway is responsible for early atrophy and tissue loss. As disease progresses, metaplastic and dysplastic glands arise which express Fas Ag but are resistant to apoptosis and are believed to be the precursor cells for adenocarcinoma. In this report, we show that one mechanism of acquired Fas resistance is inhibition of receptor aggregation via a major histocompatibility complex class II (MHCII)-mediated, actin-dependent mechanism. For these studies we used the well-described C57BL/6 mouse model of Helicobacter pylori and Helicobacter felis infection. Under normal conditions, Fas Ag is expressed at low levels, and MHCII expression on gastric mucosal cells is negligible. With infection and inflammation, both receptors are upregulated, and 6.1% of gastric mucosal cells express MHCII in combination with Fas Ag. Using the rat gastric mucosal cell line RGM-1 transfected with murine Fas Ag and MHCIIαβ chains, we demonstrate that MHCII prevents Fas receptor aggregation and inhibits Fas-mediated signaling through its effects on the actin cytoskeleton. Depolymerization of actin with cytochalasin D allows receptors to aggregate and restores Fas sensitivity. These findings offer one mechanism by which gastric mucosal cells acquire Fas resistance.


1995 ◽  
Vol 269 (2) ◽  
pp. G287-G296 ◽  
Author(s):  
A. J. Dziki ◽  
S. Batzri ◽  
J. W. Harmon ◽  
M. Molloy

Ca2+ entry into the cell may be an early event in the pathophysiology of bile salt-induced gastric mucosal injury. The aim of this study was to characterize the rise in cytosolic free Ca2+ associated with bile salt injury and its association with cell injury and death. Rabbit gastric mucosal cells were preloaded with the Ca2+ indicator fura 2-acetoxymethyl ester (fura 2-AM) for 20 min at 37 degrees C and then exposed to graded concentrations of the bile salt deoxycholate (DC). Cytosolic free Ca2+ concentration ([Ca2+]i) was estimated by spectrofluorometry. The resting [Ca2+]i in gastric cells was 177 +/- 15 nM (n = 6). When cells were subjected to 0.5 mM DC, there was a time-dependent rise in [Ca2+]i. An increase in [Ca2+]i was observed within 2 min, at which time [Ca2+]i rose from 177 +/- 15 to 480 +/- 30 nM. The maximal increase in [Ca2+]i was observed after 20 min of exposure to 0.5 mM DC (639 +/- 49 nM), and [Ca2+]i remained unchanged for at least 2 h. The increase in [Ca2+]i depended on the concentration of DC. The minimum effective dose of DC was 0.2 mM, with which [Ca2+]i was increased by 1.6-fold (from 177 to 285 nM). At 0.5 mM DC also caused a rise in 45Ca2+ influx into the cells and reduced the viability of gastric cells from 96% to 58% at 2 h. The DC-induced rise in cytosolic free Ca2+ depended on the presence of extracellular Ca2+. In the absence of extracellular Ca2+ there was no rise in cytosolic Ca2+ and gastric cells were protected from cell death caused by DC. The DC-induced cell death was reduced from 26% to 10% and from 37% to 16% at 60 and 90 min, respectively, by removal of extracellular Ca2+. The association of DC with gastric cells was not altered by removing extracellular Ca2+. This suggests decreased DC-induced injury in the absence of extracellular Ca2+ is due to the protection from cellular hypercalcemia rather than some other mechanism related to reduced binding and/or association of DC to gastric cells. These experiments show that rising [Ca2+]i appears to be an early pathophysiological event in bile salt-induced cellular injury and that extracellular Ca2+ is critical to produce this effect.


Sign in / Sign up

Export Citation Format

Share Document