Significance of char active surface area for appraising the reactivity of low- and high-temperature chars

Fuel ◽  
1987 ◽  
Vol 66 (12) ◽  
pp. 1626-1634 ◽  
Author(s):  
M.Rashid Khan
Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 670
Author(s):  
Leandri Vermaak ◽  
Hein W. J. P. Neomagus ◽  
Dmitri G. Bessarabov

This paper describes an experimental evaluation and comparison of Pt/C and Pt-Ru/C electrocatalysts for high-temperature (100–160 °C) electrochemical hydrogen separators, for the purpose of mitigating CO poisoning. The performances of both Pt/C and Pt-Ru/C (Pt:Ru atomic ratio 1:1) were investigated and compared under pure hydrogen and a H2/CO gas mixture at various temperatures. The electrochemically active surface area (ECSA), determined from cyclic voltammetry, was used as the basis for a method to evaluate the performances of the two catalysts. Both CO stripping and the underpotential deposition of hydrogen were used to evaluate the electrochemical surface area. When the H2/CO gas mixture was used, there was a complex overlap of mechanisms, and therefore CO peak could not be used to evaluate the ECSA. Hence, the hydrogen peaks that resulted after the CO was removed from the Pt surface were used to evaluate the active surface area instead of the CO peaks. Results revealed that Pt-Ru/C was more tolerant to CO, since the overlapping reaction mechanism between H2 and CO was suppressed when Ru was introduced to the catalyst. SEM images of the catalysts before and after heat treatment indicated that particle agglomeration occurs upon exposure to high temperatures (>100 °C)


Author(s):  
Kailun Yang ◽  
Recep Kas ◽  
Wilson A. Smith

<p>This study evaluated the performance of the commonly used strong buffer electrolytes, i.e. phosphate buffers, during CO<sub>2</sub> electroreduction in neutral pH conditions by using in-situ surface enhanced infrared absorption spectroscopy (SEIRAS). Unfortunately, the buffers break down a lot faster than anticipated which has serious implications on many studies in the literature such as selectivity and kinetic analysis of the electrocatalysts. Increasing electrolyte concentration, surprisingly, did not extend the potential window of the phosphate buffers due to dramatic increase in hydrogen evolution reaction. Even high concentration phosphate buffers (1 M) break down within the potentials (-1 V vs RHE) where hydrocarbons are formed on copper electrodes. We have extended the discussion to high surface area electrodes by evaluating electrodes composed of copper nanowires. We would like highlight that it is not possible to cope with high local current densities on these high surface area electrodes by using high buffer capacity solutions and the CO<sub>2</sub> electrocatalysts are needed to be evaluated by casting thin nanoparticle films onto inert substrates as commonly employed in fuel cell reactions and up to now scarcely employed in CO<sub>2</sub> electroreduction. In addition, we underscore that normalization of the electrocatalytic activity to the electrochemical active surface area is not the ultimate solution due to concentration gradient along the catalyst layer.This will “underestimate” the activity of high surface electrocatalyst and the degree of underestimation will depend on the thickness, porosity and morphology of the catalyst layer. </p> <p> </p>


2012 ◽  
Vol 12 (6) ◽  
pp. 4919-4927 ◽  
Author(s):  
Nithi Atthi ◽  
Jakrapong Supadech ◽  
Gaetan Dupuy ◽  
On-uma Nimittrakoolchai ◽  
Apirak Pankiew ◽  
...  

2018 ◽  
Vol 8 (10) ◽  
pp. 2672-2685 ◽  
Author(s):  
Rhiyaad Mohamed ◽  
Tobias Binninger ◽  
Patricia J. Kooyman ◽  
Armin Hoell ◽  
Emiliana Fabbri ◽  
...  

Synthesis of Sb–SnO2 supported Pt nanoparticles with an outstanding ECSA for the oxygen reduction reaction.


Sign in / Sign up

Export Citation Format

Share Document