Wave generation in an elastic half-space by a normal point load moving uniformly over the free surface

1976 ◽  
Vol 14 (10) ◽  
pp. 935-945 ◽  
Author(s):  
Abraham Ungar
1969 ◽  
Vol 36 (3) ◽  
pp. 505-515 ◽  
Author(s):  
D. C. Gakenheimer ◽  
J. Miklowitz

The propagation of transient waves in a homogeneous, isotropic, linearly elastic half space excited by a traveling normal point load is investigated. The load is suddenly applied and then it moves rectilinearly at a constant speed along the free surface. The displacements are derived for the interior of the half space and for all load speeds. Wave-front expansions are obtained from the exact solution, in addition to results pertaining to the steady-state displacement field. The limit case of zero load speed is considered, yielding new results for Lamb’s point load problem.


2011 ◽  
Vol 18 (6) ◽  
pp. 827-838 ◽  
Author(s):  
İ. Coşkun ◽  
H. Engin ◽  
A. Özmutlu

The dynamic response of an elastic half-space with a cylindrical cavity in a circular cross-section is analyzed. The cavity is assumed to be infinitely long, lying parallel to the plane-free surface of the medium at a finite depth and subjected to a uniformly distributed harmonic pressure at the inner surface. The problem considered is one of plain strain, in which it is assumed that the geometry and material properties of the medium and the forcing function are constant along the axis of the cavity. The equations of motion are reduced to two wave equations in polar coordinates with the use of Helmholtz potentials. The method of wave function expansion is used to construct the displacement fields in terms of the potentials. The boundary conditions at the surface of the cavity are satisfied exactly, and they are satisfied approximately at the free surface of the half-space. Thus, the unknown coefficients in the expansions are obtained from the treatment of boundary conditions using a collocation least-square scheme. Numerical results, which are presented in the figures, show that the wave number (i.e., the frequency) and depth of the cavity significantly affect the displacement and stress.


1999 ◽  
Vol 09 (05) ◽  
pp. 755-798 ◽  
Author(s):  
A. S. BONNET-BEN DHIA ◽  
J. DUTERTE ◽  
P. JOLY

We present here a theoretical study of the guided waves in an isotropic homogeneous elastic half-space whose free surface has been deformed. The deformation is supposed to be invariant in the propagation direction and localized in the transverse ones. We show that finding guided waves amounts to solving a family of 2-D eigenvalue problems set in the cross-section of the propagation medium. Then using the min-max principle for non-compact self-adjoint operators, we prove the existence of guided waves for some particular geometries of the free surface. These waves have a smaller speed than that of the Rayleigh wave in the perfect half-space and a finite transverse energy. Moreover, we prove that the existence results are valid for arbitrary high frequencies in the presence of singularities of the free boundary. Finally, we prove that no guided mode can exist at low frequency, except maybe the fundamental one.


1970 ◽  
Vol 37 (1) ◽  
pp. 109-115 ◽  
Author(s):  
S. K. Singh ◽  
J. T. Kuo

The problem of a uniformly moving circular surface load of a general orientation on an elastic half space for two types of load distribution, viz., “uniform” and “hemispherical,” is considered. The solutions have been obtained in integral form. The displacements on the surface of the half space, in the case in which the load velocity V is smaller than the transverse wave velocity of the medium CT are expressed in a closed form as a sum of two terms by using properties of Gauss’ hypergeometric functions. One of these terms gives the static part of the solution, whereas the other term represents the velocity effect part. At distances greater than about five radii from the center of the moving circular load, a moving point load is found to be a good approximation.


1993 ◽  
Vol 16 (8) ◽  
pp. 563-579 ◽  
Author(s):  
P. A. Martin ◽  
L. Päivärinta ◽  
S. Rempel

2017 ◽  
Vol 39 (4) ◽  
pp. 365-374
Author(s):  
Pham Chi Vinh ◽  
Tran Thanh Tuan ◽  
Le Thi Hue

This paper is concerned with the propagation of Rayleigh waves in an incompressible orthotropic elastic half-space coated with a thin incompressible orthotropic elastic layer. The main purpose of the paper is to establish an approximate formula for the Rayleigh wave H/V ratio (the ratio between the amplitudes of the horizontal and vertical displacements of Rayleigh waves at the traction-free surface of the layer). First, the relations between the traction amplitude vector and the displacement amplitude vector of Rayleigh waves at two sides of the interface between the layer and the half-space are created using the Stroh formalism and the effective boundary condition method. Then, an approximate formula for the Rayleigh wave H/V ratio of third-order in terms of dimensionless thickness of the layer has been derived by using these relations along with the Taylor expansion of the displacement amplitude vector of the thin layer at its traction-free surface. It is shown numerically that the obtained formula is a good approximate one. It can be used for extracting mechanical properties of thin films from measured values of the  Rayleigh wave H/V ratio.


Sign in / Sign up

Export Citation Format

Share Document