13 O 02 Distinguishing between spherical and irregular shaped aerosol particles in the submicron size range using the Dawn-A single particle optical detector

1993 ◽  
Vol 24 ◽  
pp. S79-S80 ◽  
Author(s):  
Bernd A. Sachweh ◽  
William D. Dick ◽  
Peter H. McMurry
2013 ◽  
Vol 135 (39) ◽  
pp. 14528-14531 ◽  
Author(s):  
Andrew P. Ault ◽  
Timothy L. Guasco ◽  
Olivia S. Ryder ◽  
Jonas Baltrusaitis ◽  
Luis A. Cuadra-Rodriguez ◽  
...  

2018 ◽  
Vol 11 (4) ◽  
pp. 2325-2343 ◽  
Author(s):  
Xiaoli Shen ◽  
Ramakrishna Ramisetty ◽  
Claudia Mohr ◽  
Wei Huang ◽  
Thomas Leisner ◽  
...  

Abstract. The laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF, AeroMegt GmbH) is able to identify the chemical composition and mixing state of individual aerosol particles, and thus is a tool for elucidating their impacts on human health, visibility, ecosystem, and climate. The overall detection efficiency (ODE) of the instrument we use was determined to range from  ∼  (0.01 ± 0.01) to  ∼  (4.23 ± 2.36) % for polystyrene latex (PSL) in the size range of 200 to 2000 nm,  ∼  (0.44 ± 0.19) to  ∼  (6.57 ± 2.38) % for ammonium nitrate (NH4NO3), and  ∼  (0.14 ± 0.02) to  ∼  (1.46 ± 0.08) % for sodium chloride (NaCl) particles in the size range of 300 to 1000 nm. Reference mass spectra of 32 different particle types relevant for atmospheric aerosol (e.g. pure compounds NH4NO3, K2SO4, NaCl, oxalic acid, pinic acid, and pinonic acid; internal mixtures of e.g. salts, secondary organic aerosol, and metallic core–organic shell particles; more complex particles such as soot and dust particles) were determined. Our results show that internally mixed aerosol particles can result in spectra with new clusters of ions, rather than simply a combination of the spectra from the single components. An exemplary 1-day ambient data set was analysed by both classical fuzzy clustering and a reference-spectra-based classification method. Resulting identified particle types were generally well correlated. We show how a combination of both methods can greatly improve the interpretation of single-particle data in field measurements.


2019 ◽  
Vol 59 (3) ◽  
Author(s):  
Inga Garbarienė ◽  
Vidmantas Remeikis ◽  
Agnë Mašalaitė ◽  
Andrius Garbaras ◽  
Tpmasz Petelski ◽  
...  

We analysed δ13C of total carbon (TC) and δ15N of total nitrogen (TN) in submicron (PM1) and size segregated aerosol particles (PM0.056–2.5) collected during a cruise in the Baltic Sea from 9 to 17 November 2012. PM1 were characterized by the highest δ13C (–26.4‰) and lowest δ15N (–0.2 and 0.8‰) values when air masses arrived from the southwest direction (Poland). The obtained δ13C values indicated that combined emissions of coal and diesel/gasoline combustion were the most likely sources of TC. The depleted δ15N values indicated that TN originated mainly from liquid fuel combustion (road traffic, shipping) during this period. The lowest δ13C and highest δ15N values were determined in PM1 samples during the western airflow when the air masses had no recent contact with land. The highest δ15N values were probably associated with chemical aging of nitrogenous species during long-range transport, the lowest δ13C values could be related to emissions from diesel/gasoline combustion, potentially from ship traffic. The δ13C analysis of size-segregated aerosol particles PM0.056–2.5 revealed that the lowest δ13C values were observed in the size range from 0.056 to 0.18 µm and gradual 13C enrichment occurred in the size range from 0.18 to 2.5 µm due to different sources or formation mechanisms of the aerosols.


1994 ◽  
Vol 20 (4) ◽  
pp. 345-362 ◽  
Author(s):  
W. D. Dick ◽  
P. H. McMurry ◽  
J. R. Bottiger

2020 ◽  
Vol 35 (12) ◽  
pp. 2834-2839
Author(s):  
Shuji Yamashita ◽  
Akira Miyake ◽  
Takafumi Hirata

The analytical size range of nanoparticles are expanded toward a larger region using polyatomic ions.


Sign in / Sign up

Export Citation Format

Share Document