Effect of Structural Heterogeneity in Chemical Composition on Online Single-Particle Mass Spectrometry Analysis of Sea Spray Aerosol Particles

2017 ◽  
Vol 51 (7) ◽  
pp. 3660-3668 ◽  
Author(s):  
Camille M. Sultana ◽  
Douglas B. Collins ◽  
Kimberly A. Prather
2013 ◽  
Vol 135 (39) ◽  
pp. 14528-14531 ◽  
Author(s):  
Andrew P. Ault ◽  
Timothy L. Guasco ◽  
Olivia S. Ryder ◽  
Jonas Baltrusaitis ◽  
Luis A. Cuadra-Rodriguez ◽  
...  

2020 ◽  
Author(s):  
Johannes Passig ◽  
Julian Schade ◽  
Ellen Iva Rosewig ◽  
Robert Irsig ◽  
Thomas Kröger-Badge ◽  
...  

Abstract. We describe resonance effects in laser desorption/ionization (LDI) of particles that substantially increase the sensitivity and selectivity to metals in single particle mass spectrometry (SPMS). Within the proposed scenario, resonant light absorption by ablated metal atoms increases their ionization rate within a single laser pulse. By choosing the appropriate laser wavelength, the key micronutrients Fe, Zn and Mn can be detected on individual aerosol particles with considerably improved efficiency. These ionization enhancements for metals apply to natural dust and anthropogenic aerosols, both important sources of bioavailable metals to marine environments. Transferring the results into applications, we show that the spectrum of our KrF-excimer laser is in resonance with a major absorption line of iron atoms. To estimate the impact of resonant LDI on the metal detection efficiency in SPMS applications, we performed a field experiment on ambient air with two alternately firing excimer lasers of different wavelengths. Herein, resonant LDI with the KrF-excimer laser (248.3 nm) revealed Fe signatures for many more aerosol particles compared to the more common ArF-excimer laser line of 193.3 nm. Moreover, resonant ionization of iron appeared to be less dependent on the particle matrix than conventional non-resonant LDI, allowing a more universal and secure detection of Fe. Our findings show a way to improve the detection and source attribution capabilities of SPMS for particle-bound metals, a health-relevant aerosol component and an important source of micronutrients to the surface oceans affecting marine primary productivity.


2018 ◽  
Vol 16 (1) ◽  
pp. 317-323 ◽  
Author(s):  
Tomasz Baj ◽  
Izabela Korona-Głowniak ◽  
Radosław Kowalski ◽  
Anna Malm

AbstractHyssopus officinalis L. is a common plant that is most usually found in three color forms - f. cyaneus (blue), f. ruber Mill. (purple/pink) and f. albus Alef (white). In the present work, we evaluated the chemical composition and antimicrobial activity of essential oils obtained from Polish-sourced white- and pink-flowered H. officinalis. Gas chromatography-mass spectrometry analysis of the essential oil has shown that both forms of color have a different content of main components. The principle essential oil component of white-flowered H. officinalis L. was pinocamphone (51%), while pink-flowered H. officinalis L. contained almost equal amounts of pinocamphone (28.8%) and isopinocamphone (21.9%). Of note, the essential oil of the pink form was more active against Grampositive bacteria, especially against Bacillus subtilis.


2002 ◽  
Vol 74 (7) ◽  
pp. 1642-1649 ◽  
Author(s):  
Ephraim Woods ◽  
Geoffrey D. Smith ◽  
Roger E. Miller ◽  
Tomas Baer

Chemosphere ◽  
2009 ◽  
Vol 74 (4) ◽  
pp. 501-507 ◽  
Author(s):  
Yaping Zhang ◽  
Xiaofei Wang ◽  
Hong Chen ◽  
Xin Yang ◽  
Jianmin Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document