Acoustic determination of the ideal-gas heat capacity of n-heptane at high temperatures

1990 ◽  
Vol 22 (3) ◽  
pp. 245-252 ◽  
Author(s):  
Sam O Colgate ◽  
Alwarappa Sivaraman ◽  
Kyle Reed
1997 ◽  
Vol 62 (5) ◽  
pp. 679-695
Author(s):  
Josef P. Novák ◽  
Anatol Malijevský ◽  
Jaroslav Dědek ◽  
Jiří Oldřich

It was proved that the enthalpy of saturated vapour as a function of temperature has a maximum for all substances. The dependence of the entropy of saturated vapour on temperature can be monotonous, has a minimum and a maximum, or has only a maximum. The thermodynamic relations were derived for the existence of the extremes which enable their computation from the knowledge of dependence of the ideal-gas heat capacity on temperature and an equation of state. A method based on the theorem of corresponding states was proposed for estimating the extremes, and its results were compared with literature data. The agreement between the literature and estimated temperatures corresponding to the extremes is very good. The procedure proposed can serve for giving precision to the H-p and T-S diagrams commonly used in applied thermodynamics.


2007 ◽  
Vol 21 (06) ◽  
pp. 947-953 ◽  
Author(s):  
YAHUI ZHENG ◽  
JIULIN DU

By application of the nonextensive statistics to the ideal gas model, we establish a nonextensive gas model. If we regard the nonextensive gas as a real gas, we can use the nonextensive parameter q ∈ ℝ in Tsallis statistics to describe Joule coefficient, Joule–Thomson coefficient, second virial coefficient and etc. We also derive an expression, with a multiplier T1-q, of the heat capacity of the nonextensive gas. We can prove that in the quasi-equilibrium system there is 1 - q > 0, 2 so the heat capacity still vanishes if temperature tends to zero, just as that in Boltzmann-Gibbs statistics.


Sign in / Sign up

Export Citation Format

Share Document