scholarly journals Determination of the applicability limits of the ideal gas model for the calculation of moist air properties

2018 ◽  
Vol 180 ◽  
pp. 02115
Author(s):  
Magda Vestfálová ◽  
Pavel Šafařík
2018 ◽  
Vol 180 ◽  
pp. 02115
Author(s):  
Magda Vestfálová ◽  
Pavel Šafařík

The submitted paper deals with the finding of such moist air states in which the components of moist air and hence the humid air itself can be described by the ideal gas model while maintaining a predefined accuracy. Both components of moist air (dry air and water vapor) can be described by a model of ideal gas at sufficiently low pressures and sufficiently high temperatures. In the paper, we are looking for such combinations of pressures and temperatures for both components, where the relative deviation in the density calculation using the ideal gas model does not exceed the desired value. In addition, on the basis of the mixture theory, such moist air conditions (characterized by pressure, temperature and specific humidity) are searched, on which the accuracy of the calculation meets the required conditions. Subsequently, diagrams are constructed that can be used to help identify the interface between a moist air area that can be described by a simple ideal gas model, and areas where it is necessary to use a more accurate model for one of the components.


2002 ◽  
Vol 125 (1) ◽  
pp. 374-384 ◽  
Author(s):  
D. Bu¨cker ◽  
R. Span ◽  
W. Wagner

A new model for the prediction of caloric properties of moist air and combustion gases has been developed. The model very accurately predicts ideal gas caloric properties of undissociated gas mixtures at temperatures from 200 K to 3300 K. In addition, a simple model has been developed to account for caloric effects of dissociation at temperatures up to 2000 K. As a part of the project, scientific equations for the ideal gas isobaric heat capacity of the individual combustion gas components have been established. Based on this reference, an assessment and comparison of the new model with the most common technical models have been carried out. Results of the simplified dissociation model are compared to the results of complex chemical equilibrium programs. To mark out the limits of the ideal gas hypothesis, some sample calculations are given, which compare results of the new ideal gas model to results from sophisticated real gas models.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Joseph K. Ausserer ◽  
Marc D. Polanka ◽  
Matthew J. Deutsch ◽  
Jacob A. Baranski ◽  
Keith D. Rein

Abstract In-cylinder temperature is a critical quantity for modeling and understanding combustion dynamics in internal combustion engines (ICEs). It is difficult to measure in small, two-stroke engines due to high operational speeds and limited space to install instrumentation. Optical access was established in a 55-cm3 displacement two-stroke engine using M4 bolts as carriers for sapphire rods to establish a 1.5-mm diameter optical path through the combustion chamber. Temperature laser absorption spectroscopy was successfully used to measure time varying in-cylinder temperature clocked to the piston position with a resolution of 3.6 crank angle degrees (CAD) at 6000 rpm. The resulting temperature profiles clearly showed the traverse of the flame front and were qualitatively consistent with in-cylinder pressure, engine speed, and delivery ratio. The temperature measurements were compared to aggregate in-cylinder temperatures calculated using the ideal gas model using measured in-cylinder pressure and trapped mass calculated at exact port closure as inputs. The calculation was sensitive to the trapped mass determination, and the results show that using the ideal gas model for in-cylinder temperature calculations in heat flux models may fail to capture trends in actual in-cylinder temperature with changing engine operating conditions.


2007 ◽  
Vol 21 (06) ◽  
pp. 947-953 ◽  
Author(s):  
YAHUI ZHENG ◽  
JIULIN DU

By application of the nonextensive statistics to the ideal gas model, we establish a nonextensive gas model. If we regard the nonextensive gas as a real gas, we can use the nonextensive parameter q ∈ ℝ in Tsallis statistics to describe Joule coefficient, Joule–Thomson coefficient, second virial coefficient and etc. We also derive an expression, with a multiplier T1-q, of the heat capacity of the nonextensive gas. We can prove that in the quasi-equilibrium system there is 1 - q > 0, 2 so the heat capacity still vanishes if temperature tends to zero, just as that in Boltzmann-Gibbs statistics.


Author(s):  
Manuel Fritsche ◽  
Philipp Epple ◽  
Karsten Hasselmann ◽  
Felix Reinker ◽  
Robert Wagner ◽  
...  

Abstract Efficient processes with organic fluids are becoming increasingly important. The high tech fluid Novec™ is such an organic fluid and is used, for example, as a coolant for highperformance electronics, low-temperature heat transfer applications, cooling of automotive batteries, just to mention a few. Thus, efficient designed fans for the transport of organic fluids are becoming more and more important in the process engineering. CFD-simulations are nowadays integral part of the design and optimization process of fans. For air at the most usual application conditions, i.e. no extreme temperatures or pressures, the ideal gas model is in good agreement with the real gas approach. In the present study, this real gas approach for organic fluids have been investigated with CFD methods and, the deviation from the ideal gas model has been analyzed. For this purpose, a simulation model of a centrifugal fan with volute has been designed as a test case. First, the ideal gas model approach has been compared with the real gas approach model of Peng-Robinson for air using the commercial solver ANSYS CFX. Thereafter, the same comparison has been performed using the organic fluid Novec™. After a detailed grid study, the entire fan characteristics, i.e. the design point and the off-design points, have been simulated and evaluated for each fluid (air and Novec™) and gas model (ideal gas and Peng-Robinson real gas). The steady state simulations of the centrifugal fan have been performed using the Frozen Rotor model. The simulation results have been compared, discussed and presented in detail.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Christopher P. Paolini ◽  
Subrata Bhattacharjee

The ideal gas (IG) model is probably the most well-known gas models in engineering thermodynamics. In this paper, we extend the IG model into an ideal gas equilibrium (IGE model) mixture model by incorporating chemical equilibrium calculations as part of the state evaluation. Through a simple graphical interface, users can set the atomic composition of a gas mixture. We have integrated this model into a thermodynamic web portal TEST (http://thermofluids.sdsu.edu/) that contains Java applets for various models for properties of pure substances. In the state panel of the IGE model, the known thermodynamic properties are entered. For a given pressure and temperature, the mixture's Gibbs function is minimized subject to atomic constraints and the equilibrium composition along with thermodynamic properties of the mixture are calculated and displayed. What is unique about this approach is that equilibrium computations are performed in the background, without requiring any major change in the familiar user interface used in other state daemons. Properties calculated by this equilibrium state daemon are compared with results from other established applications such as NASA CEA and STANJAN. Also, two different algorithms, an iterative approach and a direct approach based on minimizing different thermodynamic functions in different situation, are compared.


1990 ◽  
Vol 22 (3) ◽  
pp. 245-252 ◽  
Author(s):  
Sam O Colgate ◽  
Alwarappa Sivaraman ◽  
Kyle Reed

Author(s):  
Lucian Hanimann ◽  
Luca Mangani ◽  
Ernesto Casartelli ◽  
Damian Vogt ◽  
Marwan Darwish

In the majority of compressible flow CFD simulations, the standard ideal gas state equation is accurate enough. However, there is a range of applications where the deviations from the ideal gas behaviour is significant enough that performance predictions are no longer valid and more accurate models are needed. While a considerable amount of the literature has been written about the application of real gas state equations in CFD simulations, there is much less information on the numerical issues involved in the actual implementation of such models. The aim of this article is to present a robust implementation of real gas flow physics in an in-house, coupled, pressure-based solver, and highlight the main difference that arises as compared to standard ideal gas model. The consistency of the developed iterative procedures is demonstrated by first comparing against results obtained with a framework using perfect gas simplifications. The generality of the developed framework is tested by using the parameters from two different real gas state equations, namely the IAPWS-97 and the cubic state equations state equations. The highly polynomial IAPWS-97 formulation for water is applied to a transonic nozzle case where steam is expanded at transonic conditions until phase transition occurs. The cubic state equations are applied to a two stage radial compressor setup. Results are compared in terms of accuracy with a commercial code and measurement data. Results are also compared against simulations using the ideal gas model, highlighting the limitations of the later model. Finally, the effects of the real gas formulations on computational time are compared with results obtained using the ideal gas model.


Sign in / Sign up

Export Citation Format

Share Document