The gravimetric method of soil moisture determination Part III An examination of factors influencing soil moisture variability

1970 ◽  
Vol 11 (3) ◽  
pp. 288-300 ◽  
Author(s):  
S.G. Reynolds
PLoS ONE ◽  
2019 ◽  
Vol 14 (8) ◽  
pp. e0220457 ◽  
Author(s):  
Andrew Gillreath-Brown ◽  
Lisa Nagaoka ◽  
Steve Wolverton

CATENA ◽  
2011 ◽  
Vol 87 (3) ◽  
pp. 357-367 ◽  
Author(s):  
Xiaodong Gao ◽  
Pute Wu ◽  
Xining Zhao ◽  
Yinguang Shi ◽  
Jiawen Wang ◽  
...  

2005 ◽  
Vol 6 (5) ◽  
pp. 670-680 ◽  
Author(s):  
David M. Lawrence ◽  
Julia M. Slingo

Abstract A recent model intercomparison, the Global Land–Atmosphere Coupling Experiment (GLACE), showed that there is a wide range of land–atmosphere coupling strengths, or the degree that soil moisture affects the generation of precipitation, amongst current atmospheric general circulation models (AGCMs). Coupling strength in the Hadley Centre atmosphere model (HadAM3) is among the weakest of all AGCMs considered in GLACE. Reasons for the weak HadAM3 coupling strength are sought here. In particular, the impact of pervasive saturated soil conditions and low soil moisture variability on coupling strength is assessed. It is found that when the soil model is modified to reduce the occurrence of soil moisture saturation and to encourage soil moisture variability, the soil moisture–precipitation feedback remains weak, even though the relationship between soil moisture and evaporation is strengthened. Composites of the diurnal cycle, constructed relative to soil moisture, indicate that the model can simulate key differences in boundary layer development over wet versus dry soils. In particular, the influence of wet or dry soil on the diurnal cycles of Bowen ratio, boundary layer height, and total heat flux are largely consistent with the observed influence of soil moisture on these properties. However, despite what appears to be successful simulation of these key aspects of the indirect soil moisture–precipitation feedback, the model does not capture observed differences for wet and dry soils in the daily accumulation of boundary layer moist static energy, a crucial feature of the feedback mechanism.


Sign in / Sign up

Export Citation Format

Share Document