Biochemical bases of seed resistance to Zabrotes subfasciatus (bean weevil) in Phaseolus vulgaris (common bean); A mechanism for arcelin toxicity

1990 ◽  
Vol 36 (10) ◽  
pp. 757-767 ◽  
Author(s):  
B.Hugo P. Minney ◽  
Angharad M.R. Gatehouse ◽  
Philip Dobie ◽  
Julie Dendy ◽  
Cesar Cardona ◽  
...  
2017 ◽  
Vol 38 (01) ◽  
pp. 1-15 ◽  
Author(s):  
Shiferaw G. Tigist ◽  
Rob Melis ◽  
Julia Sibiya ◽  
Gemechu Keneni

AbstractCommon bean (Phaseolus vulgarisL.) is amongst the most important grain legume crops in Africa in general, and Ethiopia in particular. The Mexican been weevil (Zabrotes subfasciatusBoheman) heavily attacks the grain of common bean. A total of 300 common bean entries were subjected to a ‘no-choice’ test at Melkassa Agricultural Research Centre, Ethiopia, using a randomized complete block design with three replications, to evaluate for resistance to the Mexican bean weevil. Data on insect and seed traits were collected and a significant level (P<0.01) of variation in all parameters measured was observed amongst genotypes. Relative resistance was recorded in landraces, improved genotypes and breeding lines, but the resistant genotypes, RAZ-11, RAZ-36, RAZ-2, RAZ-44, RAZ-120, RAZ-40 and MAZ-203, showed consistently complete resistance, with zero index of susceptibility value. Two other promising entries were also identified from the breeding lines (SCR-11) and landrace collections (NC-16) of Ethiopia. Stratified ranking diagrams showed that accessions from different eco-geographical origins in Ethiopia and those with different colours showed different patterns of response to infestation. The Ethiopian bean breeding programme should take up the resistant genotypes for a comprehensive yield trial at the national level and direct release them as commercial varieties. The incorporation of bean weevil resistance genes into adapted varieties through backcross breeding techniques, supported with marker assisted selection, seems to be the best strategy not only in terms of time saving but also in terms of effectiveness and efficiency.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Tariku Mesele ◽  
Kumela Dibaba ◽  
Esayas Mendesil

The common bean, Phaseolus vulgaris L., is one of the most important sources of protein in Ethiopia and other developing countries. However, the Mexican bean weevil, Zabrotes subfasciatus (Boheman), is a major constraint of stored common bean that causes qualitative and quantitative losses. This study was conducted to assess farmers’ knowledge and perceptions of Mexican bean weevil, to examine farmers’ pest management practices, and to identify challenges of pest management practices to develop integrated pest management (IPM) strategies. A survey of 148 smallholder common bean farmers was conducted at Mareka and Loma districts in southern Ethiopia. The majority (75%) of the farmers stored common bean in polypropylene bags while less than 10% of the farmers stored beans in ‘Diya’ (a traditional storage structure). Most (60.8%) farmers stored their beans in seed (threshed) form, and the majority (63.5%) of them stored their beans for 3-5 months. The majority of the farmers had knowledge about the Mexican bean weevil; they could identify damaged seeds based on the ‘holes’ on the seed (72.3%) and circular ‘windows’ on the seed (20.0%). About 45% of the farmers mentioned the high amount of loss at the time of storage. In addition, most farmers (53.4%) estimated 26-50% loss in storage. Most farmers reported the use of pesticidal plants for control of Mexican bean weevil, while only a few farmers reported they had applied insecticide in their store. Education level and family size had a positive and statistically significant impact on the use of pesticidal plants for the control of Mexican bean weevil. Furthermore, education level also influences the use of chemical insecticide. Results highlighted the need to use improved storage technology and to train farmers in postharvest handling practices as a component to develop IPM approach in order to minimize losses occurring along the value chains of the common bean.


2018 ◽  
Vol 46 (5) ◽  
pp. 645-651 ◽  
Author(s):  
Elio C. Guzzo ◽  
José D. Vendramim ◽  
André L. Lourenção ◽  
Alisson F. Chiorato ◽  
Sérgio A. M. Carbonell ◽  
...  

1999 ◽  
Vol 34 (10) ◽  
pp. 1805-1810 ◽  
Author(s):  
Flávia Rabelo Barbosa ◽  
Massaru Yokoyama ◽  
Pedro Antônio Arraes Pereira ◽  
Francisco José Pfeilsticker Zimmermann

Arcelin is a seed protein found in wild beans (Phaseolus vulgaris) which gives resistance to Mexican bean weevil, Zabrotes subfasciatus (Boheman 1833) (Coleoptera: Bruchidae). Studies were carried out with the objective of estimating the effect of four alleles of protein arcelin (Arc1, Arc2, Arc3 and Arc4) on the biology of Z. subfasciatus. The experiment was carried out in laboratory at Embrapa-Centro Nacional de Pesquisa de Arroz e Feijão, in Santo Antônio de Goiás, GO, Brazil, under non controlled conditions. The highest levels of antibiosis to Z. subfasciatus were observed in Arc1, with reduction in the number of eggs, number of emerged adults, adults longevity. In the line Arc2 only reduction in the number of emerged adults was observed. The lines Arc3 and Arc4 showed low efficiency on the reduction of progeny of Z. subfasciatus and effects in the longevity and egg-adult cycle were not detected. Insect sexual ratio was not altered by the presence of Arc1, Arc2, Arc3 and Arc4 in the seeds.


Sign in / Sign up

Export Citation Format

Share Document