Spectroscopic identification of a number of radiation—produced alkane radical cations

1982 ◽  
Vol 80 ◽  
pp. 71-74 ◽  
Author(s):  
M. Strobbe ◽  
J. Ceulemans
1984 ◽  
Vol 21 (3) ◽  
pp. 661-667 ◽  
Author(s):  
Misa V. Jovanovic ◽  
Edward R. Biehl ◽  
Robert D. Rosenstein ◽  
Shirley S. C. Chu

2020 ◽  
Author(s):  
Oisin Shiels ◽  
P. D. Kelly ◽  
Cameron C. Bright ◽  
Berwyck L. J. Poad ◽  
Stephen Blanksby ◽  
...  

<div> <div> <div> <p>A key step in gas-phase polycyclic aromatic hydrocarbon (PAH) formation involves the addition of acetylene (or other alkyne) to σ-type aromatic radicals, with successive additions yielding more complex PAHs. A similar process can happen for N- containing aromatics. In cold diffuse environments, such as the interstellar medium, rates of radical addition may be enhanced when the σ-type radical is charged. This paper investigates the gas-phase ion-molecule reactions of acetylene with nine aromatic distonic σ-type radical cations derived from pyridinium (Pyr), anilinium (Anl) and benzonitrilium (Bzn) ions. Three isomers are studied in each case (radical sites at the ortho, meta and para positions). Using a room temperature ion trap, second-order rate coefficients, product branching ratios and reaction efficiencies are reported. </p> </div> </div> </div>


1993 ◽  
Vol 58 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Rudolf Zahradník

The energies and heats of ion-molecule reactions have been calculated (MP4/6-31G**//6-31G** or better level) and compared with the experimental values obtained from the heats of formation. Two main types of reactions have been studied: (i) AHn + AHn+• ↔ AHn+1+ + AHn-1• (A = C to F and Si to Cl), (ii) AHn + BHm+• ↔ AHn+1+ + BHm-1• or AHn-1+• + BHm+1+ (A and B = C to F). In contrast to (i), processes of type (ii) permit easy differentiation between the proton transfer and hydrogen atom abstraction mechanisms. A third type of interaction involves reactions with radical anions (A = Li to F); comparison was made with analogous processes with radical cations. A brief comment is made about the influence of the level of computational sophistication on the energies and heats of reaction, as well as on the stabilization energy of a hydrogen bonded intermediate, a structure which is similar to that of the reaction products.


1990 ◽  
Vol 55 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Zdeněk Friedl ◽  
Stanislav Böhm

The relative enthalpies of proton transfer δ ΔH0and homolytic bond strengths δDH0(B-H+) were calculated by the MNDO method for the sp and ap conformers of 4-flurobutylamine. The data obtained, along with the experimental gas phase basicities, are compared with the values predicted by the electrostatic theory. It is shown that the substituent polar effects FD on the basicities of amines are predominantly due to interactions in their protonated forms (X-B-H+) and/or radical-cations (X-B+.), those in the neutral species (X-B) playing a minor part. A contribution, which is considerably more significant in the sp conformer than in the ap conformer, arises probably also from substituent effects on the homolytic bond strength DH0(B-H+.


2003 ◽  
Vol 68 (12) ◽  
pp. 2322-2334 ◽  
Author(s):  
Robert Vianello ◽  
Zvonimir B. Maksić

The electronic and energetic properties of thymine (1) and 2-thiothymine (2) and their neutral and positively charged radicals are considered by a combined ab initio and density functional theory approach. It is conclusively shown that ionization of 1 and 2 greatly facilitates deprotonation of the formed radical cations thus making the proton transfer between charged and neutral precursor species thermodynamically favourable. The adiabatic ionization potential of 1 and 2 are analysed. It appears that ADIP(1) is larger than ADIP(2) by 10 kcal/mol, because of greater stability of the highest occupied molecular orbital (HOMO) of the former. It is also shown beyond any doubt that the spin density in neutral and cationic radical of 2 is almost exclusively placed on the σ-3p AO of sulfur implying that these two systems represent rather rare sigma-radicals. In contrast, the spin density of radicals of 1 is distributed over their π-network.


Sign in / Sign up

Export Citation Format

Share Document