The mixed alkali effect in lithium-sodium borate glasses

1984 ◽  
Vol 64 (3) ◽  
pp. 335-349 ◽  
Author(s):  
H. Jain ◽  
H.L. Downing ◽  
N.L. Peterson
2011 ◽  
Vol 312-315 ◽  
pp. 1184-1197
Author(s):  
Helmut Mehrer

This paper reviews typical results of tracer diffusion and ionic conduction in soda-lime silicate glass and in single-alkali and mixed-alkali borate glass obtained in our laboratory and published in detail elsewhere. We have studied tracer diffusion of modifier cations and ionic conduction as functions of composition, temperature and, in the case of borate glass, also as function of pressure. We compare tracer diffusion with charge diffusion and in the case of soda-lime glass also with viscosity diffusion. The Haven ratios for soda-lime glass are temperature independent. For sodium borate glass the Haven ratio is almost temperature- and pressure-independent, whereas it decreases significantly with decreasing temperature and increasing pressure for rubidium borate glass. It also decreases with increasing alkali content. We attribute these facts to collective atomic jump events, in which several ions move simultaneously in a string-like or chain-like fashion. We also illustrate the mixed-alkali effect, which was studied by conductivity measurements and by tracer diffusion for mixed sodium-rubidium borate glasses.


Solids ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 16-30
Author(s):  
Seiji Kojima

When oxide glasses are modified by dissimilar alkali ions, a maximum in the electric resistivity or the expansion coefficient appears, called the mixed-alkali effect (MAE). This paper reviews the MAE on the thermal, elastic, and vibrational properties of the mixed-cesium lithium borate glasses, x{(1−y)Cs2O-yLi2O}-(1−x)B2O3. For the single-alkali borate glasses, xM2O(1−x)-B2O3 (M = Li, Na, K, Rb, and Cs), the glass transition temperature, Tg = 270 °C, of a borate glass monotonically increases as the alkali content x increases. However, for the mixed-cesium lithium borate glasses the Tg shows the minimum against the lithium fraction y. The dependences of the elastic properties on the lithium fraction y were discussed regarding the longitudinal modulus, Poisson’s ratio, and Cauchy-type relation. The internal vibrational bands related to the boron-oxide structural groups and the splitting of a boson peak were discussed based on Raman scattering spectroscopy. The MAE on various physical properties are discussed on the basis of the changes in the coordination number of the borons and the nonbridging oxygens caused by the dissimilar alkali ions.


2004 ◽  
Vol 39 (13) ◽  
pp. 4325-4329 ◽  
Author(s):  
E. Mansour ◽  
H. Doweidar ◽  
G. El-Damrawi ◽  
Y. M. Moustafa

Sign in / Sign up

Export Citation Format

Share Document