Thermal conductivity of silica aerogel powders at temperatures from 10 to 275 K

1995 ◽  
Vol 186 ◽  
pp. 278-284 ◽  
Author(s):  
Th. Rettelbach ◽  
J. Säuberlich ◽  
S. Korder ◽  
J. Fricke
1995 ◽  
Vol 28 (3) ◽  
pp. 581-587 ◽  
Author(s):  
T Rettelbach ◽  
J Sauberlich ◽  
S Korder ◽  
J Fricke

2020 ◽  
Vol 66 (1) ◽  
Author(s):  
Hong Chen ◽  
Yutian Zhang ◽  
Tuhua Zhong ◽  
Zhihui Wu ◽  
Xianxu Zhan ◽  
...  

AbstractThe aim of the study was to develop a simple and cost-effective method to improve thermal insulation and hydrophobicity of wood. Herein, we attempted to use commercially available silica aerogel powders suspended in ethanol to treat the wood by a simple vacuum impregnation process. The effects of particle size (20 µm and 40 nm) of silica aerogels and the number of impregnation cycles (1, 3, and 5 cycles) were examined on the thermal conductivity and the surface hydrophobicity. The results showed that the thermal conductivity of silica aerogel-impregnated wood decreased by approximately 38%. The water contact angle of the impregnated wood increased up to the maximum values 153° with a comparison with 80° of the untreated wood, indicating effective hydrophobization after silica aerogel impregnation. The tensile properties of the impregnated wood were found slightly improved. The results indicate that the impregnation of silica aerogel powders in wood can be a facile and efficient approach to prepare wood with thermal insulation and hydrophobicity, which may hold great promise to be employed in manufacturing wood-based materials used in interior decoration and buildings.


2007 ◽  
Vol 546-549 ◽  
pp. 1581-1584 ◽  
Author(s):  
Jiu Peng Zhao ◽  
Deng Teng Ge ◽  
Sai Lei Zhang ◽  
Xi Long Wei

Silica aerogel/epoxy composite, a kind of efficient thermal insulation material, was prepared by doping silica aerogel of different sizes into epoxy resin through thermocuring process. The results of thermal experiments showed that silica aerogel/epoxy composite had a lower thermal conductivity (0.105W/(m·k) at 60 wt% silica aerogel) and higher serviceability temperature (Martens heat distortion temperature: 160°C at 20 wt% silica aerogel). In addition, the composite doping larger size (0.2-2mm) of silica aerogel particle had lower thermal conductivity and higher Martens heat distortion temperature. Based on the results of SEM and FT-IR, the thermal transfer model was established. Thermal transfer mechanism and the reasons of higher Martens heat distortion temperature have been discussed respectively.


1934 ◽  
Vol 26 (6) ◽  
pp. 658-662 ◽  
Author(s):  
S. S. Kistler ◽  
A. G. Caldwell

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3192 ◽  
Author(s):  
Dong Chen ◽  
Xiaodong Wang ◽  
Wenhui Ding ◽  
Wenbing Zou ◽  
Qiong Zhu ◽  
...  

Owing to their ultra-low thermal conductivity, silica aerogels are promising thermal insulators; however, their extensive application is limited by their high production cost. Thus, scientists have started to explore low-cost and easy preparation processes of silica aerogels. In this work, a low-cost method was proposed to prepare silica aerogels with industrial silica hydrosol and a subsequent ambient pressure drying (APD) process. Various surfactants (cationic, amphoteric, or anionic) were added to avoid solvent exchange and surface modification during the APD process. The effects of various surfactants on the microstructure, thermal conductivity, and thermal stability of the silica aerogels were studied. The results showed that the silica aerogels prepared with a cationic or anionic surfactant have better thermal stability than that prepared with an amphoteric surfactant. After being heated at 600 °C, the silica aerogel prepared with a cationic surfactant showed the highest specific surface area of 131 m2∙g−1 and the lowest thermal conductivity of 0.038 W∙m−1∙K−1. The obtained low-cost silica aerogel with low thermal conductivity could be widely applied as a thermal insulator for building and industrial energy-saving applications.


2014 ◽  
Vol 924 ◽  
pp. 329-335 ◽  
Author(s):  
Cong Hang Li ◽  
Shi Chen Jiang ◽  
Zheng Ping Yao ◽  
Song Sheng ◽  
Xin Jian Jiang ◽  
...  

Based on the nanoporous network structure features of silica aerogel, the gas-solid coupled heat transfer model of silica aerogel is analyzed, and the calculation formulas of the gas-solid coupled, the gas thermal conductivity and the heat radiation within the aerogel are derived. The thermal conductivity of pure silica aerogel is calculated according to the derived heat transfer model and is also experimentally measured. Moreover, measurements on the thermal conductivities of silica aerogel composites with different densities at ambient conditions are performed. And finally, a novel design of silica aerogel based integrated structure and thermal insulation used for withstanding the harsh thermal environment on the Martin surface is presented.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Ellann Cohen ◽  
Leon Glicksman

When the transient hot-wire method is used to measure the thermal conductivity of very low thermal conductivity silica aerogel (in the range of 10 mW/m·K at 1 atm) end effects due to the finite wire size and radiation corrections must be considered. An approximate method is presented to account for end effects with realistic boundary conditions. The method was applied to small experimental samples of the aerogel using different wire lengths. Initial conductivity results varied with wire length. This variation was eliminated by the use of the end effect correction. The test method was validated with the NIST (National Institute of Standards and Technology) Standard Reference Material 1459, fumed silica board to within 1 mW/m·K. The aerogel is semitransparent. Due to the small wire radius and short transient, radiation heat transfer may not be fully accounted for. In a full size aerogel panel radiation will augment the phonon conduction by a larger amount.


2020 ◽  
Vol 15 (2) ◽  
Author(s):  
K. Keerthi Sanghamitra ◽  
A. Yamini ◽  
A. Venu Vinod ◽  
Neha Hebalkar

AbstractAerogels are regarded as the superior thermal insulating materials for wide range of temperatures, from cryogenic insulation, cold water diving garments to high temperature applications and even to defense and aerospace applications. For most of such applications, the aerogels are used in composite form rather than monolithic form as aerogels are fragile in nature due to its high porosity of up to 98%. These composites constitute aerogel infiltrated fiber mats to give flexibility, on the other hand, compromises on the insulation performance due to reinforcing aerogel with fibers that have comparatively higher thermal conductivity than silica aerogel. To increase the efficiency, density of the fiber mat needs to be reduced to incorporate higher loading of silica aerogel. Many techniques are being used to study the insulation performance of these composites. This paper presents about the study of insulation performance of fibre mats with different aerogel content and composition using a well-known thermography technique. The morphological, compositional, thermal and physical studies of the fiber mats and its composites using FESEM, EDAX, BET, thermal conductivity etc., are discussed.


2008 ◽  
Vol 92 (22) ◽  
pp. 221913 ◽  
Author(s):  
N. L. Kugland ◽  
J. D. Moody ◽  
B. J. Kozioziemski ◽  
A. M. Rubenchik ◽  
C. Niemann

Sign in / Sign up

Export Citation Format

Share Document