Tensile, low cycle fatigue and fracture toughness behaviour of type 316L steel irradiated to 0.3 dpa

1994 ◽  
Vol 212-215 ◽  
pp. 525-529 ◽  
Author(s):  
Bertil Josefsson ◽  
Ulf Bergenlid
2006 ◽  
Vol 326-328 ◽  
pp. 1075-1078
Author(s):  
Seok Jin Kwon ◽  
Jung Won Seo ◽  
Hyun Mu Hur ◽  
Sung Tae Kwon

Despite of improvement of wheel material for railway vehicle, the damages of railway wheel have been occurred in service running. Because of wheel damage with spalling, shelling and thermal crack, the maintenance cost for the railway wheel has increased. The railway wheel had standardized but the chemical composition, the mechanical property and the hardness with respect to railway wheel is merely established. In order to reduce wheel damage, it is necessary to reinforce the standard of railway wheel. In present study, the fracture mechanics characteristics of railway wheel such as low cycle fatigue, fracture toughness, impact energy depended on low temperature and so on have tested. The result shows that the standard of railway wheel has to supplement fracture toughness and impact energy depended on low temperature etc.


2019 ◽  
Vol 206 ◽  
pp. 442-451 ◽  
Author(s):  
A.A. Stepashkin ◽  
D.Yu. Ozherelkov ◽  
Yu.B. Sazonov ◽  
A.A. Komissarov

Author(s):  
Daowu Zhou ◽  
T. Sriskandarajah ◽  
Heidi Bowlby ◽  
Ove Skorpen

The deformation mechanism in reel-lay of corrosive resistance alloy (CRA) clad/lined pipes can facilitate defect tearing and low cycle fatigue crack growth in the girth welds. Pipe-lay after straightening will subject the CRA welds to high cycle fatigue. The permissible seastate for installation will be governed by failure limit states such as local collapse, wrinkling of the liner, fatigue and fracture. By means of a recently completed offshore project in North Sea, this paper discusses seastate optimisation when installing pipelines with CRA girth welds, from a fatigue and fracture perspective. The additional limiting requirement in CRA welds to maintain CRA liner integrity can lead to significant assessment work since all critical welds shall be examined. AUT scanned defect data were utilised to maximise permissible seastates based on fatigue allowance from a fatigue crack growth calculation. An alternative simplified approach to derive the crack growth based on a superposition method is studied. It enables a straightforward real-time prediction of crack growth and has the potential to be used during the offshore campaign to improve the installation flexibility. Post-installation fracture assessment under more critical seastates is examined for CRA partial over-matching welds. A comparison of CDF between conventional ECA procedure and 3D FE is provided.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5737
Author(s):  
Janusz Kluczyński ◽  
Lucjan Śnieżek ◽  
Krzysztof Grzelak ◽  
Janusz Torzewski ◽  
Ireneusz Szachogłuchowicz ◽  
...  

The paper is a project continuation of the examination of the additive-manufactured 316L steel obtained using different process parameters and subjected to different types of heat treatment. This work contains a significant part of the research results connected with material analysis after low-cycle fatigue testing, including fatigue calculations for plastic metals based on the Morrow equation and fractures analysis. The main aim of this research was to point out the main differences in material fracture directly after the process and analyze how heat treatment affects material behavior during low-cycle fatigue testing. The mentioned tests were run under conditions of constant total strain amplitudes equal to 0.30%, 0.35%, 0.40%, 0.45%, and 0.50%. The conducted research showed different material behaviors after heat treatment (more similar to conventionally made material) and a negative influence of precipitation heat treatment of more porous additive manufactured materials during low-cycle fatigue testing.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
J. Wainstein ◽  
J. Perez Ipiña

Coiled Tubings are thin walled steel tubes of 25–89 mm diameter and thousands meters long, used in the oil industry for production and maintenance services. They suffer plastic deformation during unwinding of the reel, passing through a goosneck arch guide and an injector unit. Strain levels are of 2–3%, making the tubing fail by low cycle fatigue in around 100 wrap–unwrap cycles. As coiled tubing material generally behaves in a ductile manner at surface and down well temperatures, the R curve has to be known to make instability analyses. J-R curves were determined to characterize the fracture toughness of nonused coiled tubing, using nonstandard specimens due to difficulties with their small thickness and diameters. Different crack lengths and crack locations were tested to analyze the 2C0/W ratio and the influence of the longitudinal weld. The R curves obtained show crack arc length dependence and are influenced by the position of the longitudinal weld.


2015 ◽  
Vol 784 ◽  
pp. 308-316 ◽  
Author(s):  
Carl Labergere ◽  
Khemais Saanouni ◽  
Zhi Dan Sun ◽  
Mohamed Ali Dhifallah ◽  
Yisa Li ◽  
...  

In this paper, cycles jumping scheme integration is used to numerically integrate fully coupled constitutive equations in order to predict the low cycle fatigue life under cyclic loading. This procedure avoids the calculation of the full loading cycles (some millions of loading cycles) while considering the transient stages due to the hardening (at the beginning) and the high damage-induced softening during the last tens of loading cycles. The model parameters have been identified using the results obtained from a 316L steel cylindrical specimen subject to symmetric tension-compression loading path. The effects of the specimen size as well as the mesh size on the fatigue life prediction are investigated.


Sign in / Sign up

Export Citation Format

Share Document