Radiopacity of posterior composite resins, composite resin luting cements, and glass ionomer lining cements

1993 ◽  
Vol 70 (4) ◽  
pp. 351-355 ◽  
Author(s):  
H.B.M. Akerboom ◽  
C.M. Kreulen ◽  
W.E. van Amerongen ◽  
A. Mol
2021 ◽  
Vol 20 ◽  
pp. e213981
Author(s):  
Fariba Motevasselian ◽  
Hamid Kermanshah ◽  
Ebrahim Rasoulkhani ◽  
Mutlu Özcan

Aim: To compare the microleakage of Cention N, a subgroup of composite resins with a resin-modified glass ionomer (RMGI) and a composite resin. Methods: Class V cavities were prepared on the buccal and lingual surfaces of 46 extracted human molars. The teeth were randomly assigned to four groups. Group A: Tetric N-Bond etch-and-rinse adhesive and Tetric N-Ceram nanohybrid composite resin, group B: Cention N without adhesive, group C: Cention N with adhesive, and group D: Fuji II LC RMGI. The teeth were thermocycled between 5°-55°C (×10,000). The teeth were coated with two layers of nail vanish except for 1 mm around the restoration margins, and immersed in 2% methylene blue (37°C, 24 h) before buccolingual sectioning to evaluate dye penetration under a stereomicroscope (×20). The data were analyzed by the Kruskal-Wallis and Wilcoxon tests (α=0.05). Results: Type of material and restoration margin had significant effects on the microleakage (p<0.05). Dentin margins showed a higher leakage score in all groups. Cention N and RMGI groups showed significant differences at the enamel margin (p=0.025, p=0.011), and for the latter group the scores were higher. No significant difference was found at the dentin margins between the materials except between Cention N with adhesive and RMGI (p=0.031). Conclusion: Microleakage was evident in all three restorative materials. Cention N groups showed similar microleakage scores to the composite resin and displayed lower microleakage scores compared with RMGI.


2013 ◽  
Vol 14 (1) ◽  
pp. 21-25 ◽  
Author(s):  
T Praveen Kumar Reddy ◽  
Kolasani Srinivasa Rao ◽  
Garlapati Yugandhar ◽  
B Sunil Kumar ◽  
SN Chandrasekhar Reddy ◽  
...  

ABSTRACT The acid pretreatment and use of composite resins as the bonding medium has disadvantages like scratching and loss of surface enamel, decalcification, etc. To overcome disadvantages of composite resins, glass ionomers and its modifications are being used for bonding. The study was conducted to evaluate the efficiency of resin reinforced glass ionomer as a direct bonding system with conventional glass ionomer cement and composite resin. The study showed that shear bond strength of composite resin has the higher value than both resin reinforced glass ionomer and conventional glass ionomer cement in both 1 and 24 hours duration and it increased from 1 to 24 hours in all groups. The shear bond strength of resin reinforced glass ionomer cement was higher than the conventional glass ionomer cement in both 1 and 24 hours duration. Conditioning with polyacrylic acid improved the bond strength of resin reinforced glass ionomer cement significantly but not statistically significant in the case of conventional glass ionomer cement. How to cite this article Rao KS, Reddy TPK, Yugandhar G, Kumar BS, Reddy SNC, Babu DA. Comparison of Shear Bond Strength of Resin Reinforced Chemical Cure Glass Ionomer, Conventional Chemical Cure Glass Ionomer and Chemical Cure Composite Resin in Direct Bonding Systems: An in vitro Study. J Contemp Dent Pract 2013;14(1):21-25.


2021 ◽  
Author(s):  
RAS Pereira ◽  
PBF Soares ◽  
AA Bicalho ◽  
LM Barcelos ◽  
LRS Oliveira ◽  
...  

SUMMARY Objectives: To analyze the effect of the porosity caused by incremental and bulk resin composite filling techniques using low- and high-viscosity composite resins on the biomechanical performance of root-treated molars. Methods: Forty intact molars received standardized mesio-occlusal-distal (MOD) cavity preparation, were root treated, and randomly divided into four groups with different filling techniques (n=10). The first involved two incremental filling techniques using VIT/Z350XT, a nanofilled composite resin (Filtek Z350XT, 3M ESPE) associated with a resinmodified glass ionomer cement, and resin-modified glass ionomer cement (RMGIC; Vitremer, 3M ESPE) for filling the pulp chamber. The second involved TPH/VIT, a microhybrid composite resin TPH3 Spectrum associated with Vitremer. The third and fourth involved two bulk-fill composite resins: SDR/TPH, a low-viscosity resin composite (Surefill SDR flow, Dentsply) associated with TPH3 Spectrum, and POST, a high-viscosity bulkfill resin composite (Filtek Bulk Fill Posterior, 3M ESPE). The volume of the porosity inside the restoration was calculated by micro-CT. The cusp deformation caused by polymerization shrinkage was calculated using the strain-gauge and micro-CT methods. The cusp deformation was also calculated during 100 N occlusal loading and loading to fracture. The fracture resistance and fracture mode were recorded. Data were analyzed by one-way analysis of variance and Tukey test. The fracture mode was analyzed by the χ2 test. The volume of the porosity was correlated with the cusp deformation, fracture resistance, and fracture mode (α=0.05). Results: Incremental filling techniques associated with RMGIC resulted in a significantly higher porosity than that of both bulk-fill techniques. However, no significant difference was found among the groups for the fracture resistance, fracture mode, and cusp deformation, regardless of the measurement time and method used. No correlation was observed between the volume of the porosity and all tested parameters. Conclusions: The porosity of the restorations had no influence on the cuspal deformation, fracture resistance, or fracture mode. The use of the RMGIC for filling the pulp chamber associated with incremental composite resins resulted in similar biomechanical performance to that of the flowable or regular paste bulk-fill composite resin restorations of root-treated molars.


2020 ◽  
Vol 31 (4) ◽  
pp. 440-444
Author(s):  
Flaviana Alves Dias ◽  
Maria Verônica Rodrigues Conto ◽  
Ricardo Danil Guiraldo ◽  
Omar Geha ◽  
Eloisa Aparecida Carlesse Paloco ◽  
...  

Abstract Posterior build-ups are auxiliary devices to orthodontic treatment which are made with resin-based or glass ionomer composites. Their removal requires care to protect the tooth surface, therefore, pigmented materials are preferred for a better visualization. This study proposed a pigmentation experimental technique of a regular composite resin, evaluating the microshear bond strength test (µ-SBT) of this experimental pigmented resin and comparing with a blue-colored polyacid-modified composite resin, used for posterior buildups. Forty-eight buccal and lingual surfaces of human teeth were used and randomly divided into 4 groups (n=12). The groups were divided into: C (control), regular composite resin; P, regular composite resin pigmented; UBL, Ultra Band Lok™; OB, Ortho Bite™. The composites were bonded using a matrix to obtain microcylinders and prepared for each experimental groups. The samples were then stored in distilled water for 24h at 37°C followed by a µ-SBT. The types of bond failures were evaluated using a stereoscopic magnifying glass (10×). The data were analyzed by ANOVA with Fisher post hoc and Dunnett´s test. Means of µ-SBT± standard deviation (MPa) were: C (39.98a±13.0), P (40.09a± 14.3); UBL (33.26ab±8.6); OB (28.70b±5.5). The most prevalent type of failure was adhesive (80.4%). Further, was not observed a statistically significant correlation between the bond strength values and failure patterns. The pigmentation of a commercially available resin did not alter the µ-SBT and exhibited similar adhesiveness as a polyacid-modified composite resin.


2013 ◽  
Vol 38 (3) ◽  
pp. 282-289 ◽  
Author(s):  
E Karaman ◽  
G Ozgunaltay

SUMMARY Aim: To evaluate the effects of four different types of composite resins and a resin modified glass ionomer cement (RMGIC) liner on the cuspal deflection of large MOD cavities in vitro. Materials & Methods: One hundred twenty-eight extracted human upper premolar teeth were used. After the teeth were divided into eight groups (n=16), standardized large MOD cavities were prepared. The distance between cusp tips was measured before and after the cavity preparations with a digital micrometer. Then the teeth were restored with different resin composites (Filtek Supreme XT, Filtek P60, Filtek Z250, Filtek Silorane - 3M ESPE, St Paul, MN, USA) with and without a RMGIC liner (Vitrebond, 3M ESPE, St Paul, MN, USA). Cuspal deflection was measured 5 min, 24 h, and 48 h after the completion of restorations. The data were statistically analyzed with Friedman and Kruskal Wallis tests. Results: A significant reduction in cuspal deflection was observed in Filtek Silorane restorations with and without RMGIC liner (p&lt;0.05). In all restored teeth, the distance between cusps was reduced but they did not return to their original positions during the 48 h period. All teeth showed cuspal deflection, but placement of RMGIC liner reduced it. Conclusion: The use of silorane-based composites and the placement of RMGIC liner under the composite resin restorations resulted in significantly reduced cuspal deflection.


2017 ◽  
Vol 20 (4) ◽  
pp. 63 ◽  
Author(s):  
Raphaela Farias Rodrigues ◽  
Suellen Scarcelli Senna ◽  
Ana Flávia Soares ◽  
Rafael Lia Mondelli ◽  
Paulo Silveira Francisconi ◽  
...  

<p><strong>Objective</strong>: To evaluate the marginal adaptation, in enamel (E) and dentin (D), of composite resin (CR) associated with flowable resin composite (flow), bulk fill flowable base (bulk) and resin modified glass ionomer cement (RMGIC) in slot cavities. <strong>Material and Methods</strong>: The study was conducted after approval (Protocol No. 21148413.4.0000.5417) from Ethics Committee. Forty extracted human molar teeth were randomly assigned in eight experimental groups: E-CR, E-BULK, E-FLOW, E-RMGIC, D-CR, D-BULK, D-FLOW, D-RMGIC. The occlusal surface was planned, two slot cavities with standard sizes (depth: 2.0 mm, height: 2.5 mm, width: 2.0 mm) were created on a machine for making cavities. The teeth were restored and after 24h subjected to 2000 cyclic loading and sectioned for analysis of marginal adaptation by scanning electron microscopy (SEM). The micrographs were analyzed with the Image J program to measure the size of marginal gaps. The data were transformed into percentages (%GAPS = LG ÷ LM  × 100) and analyzed by 2-way ANOVA followed by the post hoc Tukey test (α=0.05). <strong>Results</strong>: There was a significant difference between different treatments (<em>p&lt;0.01</em>). The groups E-RMGIC (<em>p=0.001</em>) and D-RMGIC (<em>p=0</em>) had the highest percentage of marginal gap. Others groups showed similar percentage of marginal gap <em>(p&gt;0.05)</em>. <strong>Conclusions</strong>: It was concluded that restorations with flowable composite resin and bulk fill liners exhibit the same behavior, but the RMGIC liner increased marginal gap.</p><p><strong>Keywords: </strong>Composite resins; Dental marginal adaptation; Glass ionomer cements.</p>


2021 ◽  
pp. 096739112199958
Author(s):  
Vahti Kılıç ◽  
Feridun Hurmuzlu ◽  
Yılmaz Ugur ◽  
Suzan Cangul

The aim of the present study was to investigate and compare the quantity of residual monomers leached from the bulk-fill composites with different compositions polymerized at varying layer thickness. Three bulk-fill (X-tra-fil, Beautifil Bulk Restorative, Fill-Up) and a nanohybrid composite (Filtek Z550) were used for the study. The composite resin samples were prepared with a stainless steel mold. For each composite, two groups were constructed. The samples in the first group were prepared using the 2 + 2 mm layering technique. In the second group, the composite samples were applied as a 4 mm-thick one layer and polymerized. Then, each composite samples were kept in a 75% ethanol solution and residual monomers released from composite resins were analyzed with an HPLC device after 24hour and 1 month. The data were analyzed using Kruskal-Wallis and Mann-Whitney U tests. Except the Fill-Up, all of residual monomer elution from the bulk-fill composites was significantly affected by the layer thickness (p < 0.05). The greatest monomer release was detected at 1 month after polymerization as a single 4 mm layer for Beautifil Bulk Restorative. Fill-Up composite showed similar residual monomer release in polymerization at different layer thicknesses compared to other composite resins. In the 2 + 2 mm layering technique, the least monomer elution was detected in the Filtek Z550 composite group. While Bis-GMA was the most released monomer in X-tra fil composite, UDMA was the most released monomer in all other composite resins. During polymerization of the bulk-fill composite, the layer thickness of the composite applied may affect the amount of residual monomers released from the composite resins. Conventional composites may release less monomer than bulk-fill composites when used with layering.


2020 ◽  
Vol 14 (03) ◽  
pp. 456-461
Author(s):  
Rayhaneh Khalesi ◽  
Mahdi Abbasi ◽  
Zahra Shahidi ◽  
Masoumeh Hasani Tabatabaei ◽  
Zohreh Moradi

Abstract Objectives Advances in laboratory composites and their high wear resistance and fracture toughness have resulted in their growing popularity and increasing use for dental restorations. This study sought to assess the fracture toughness of three indirect composites bonded to dental substrate and polyether ether ketone (PEEK) polymer. Materials and Methods This in vitro study was conducted on two groups of dental and polymer substrates. Each substrate was bonded to three indirect composite resins. Sixty blocks (3 × 3 × 12 mm) were made of sound bovine anterior teeth and PEEK polymer. Sixty blocks (3 × 3 × 12 mm) were fabricated of CRIOS (Coltene, Germany), high impact polymer composite (HIPC; Bredent, Germany), and GRADIA (Indirect; GC, Japan) composite resins. Composites were bonded to dentin using Panavia F 2.0 (Kuraray, Japan). For bonding to PEEK, Combo.lign (Bredent) and Visio.Link (Bredent) luting cements were used. In all samples, a single-edge notch was created by a no. 11 surgical blade at the interface. The samples were subjected to 3,500 thermal cycles, and their fracture toughness was measured in a universal testing machine (Zwick/Roell, Germany) by application of four-point flexural load. Statistical Analysis Data were analyzed using one-way analysis of variance, Kruskal–Wallis. Results The fracture toughness of CRIOS–PEEK interface was significantly higher than HIPC–PEEK. The fracture toughness of GRADIA–PEEK was not significantly different from that of HIPC and CRIOS. The fracture toughness of GRADIA–dentin was significantly higher than HIPC–dentin. Conclusion Considering the limitations of this study, GRADIA has the highest bond strength to dentin, while CRIOS shows the highest bond strength to PEEK.


2012 ◽  
Vol 37 (5) ◽  
pp. 526-531 ◽  
Author(s):  
CRG Torres ◽  
CF Ribeiro ◽  
E Bresciani ◽  
AB Borges

SUMMARY The aim of the present study was to evaluate the effect of 20% and 35% hydrogen peroxide bleaching gels on the color, opacity, and fluorescence of composite resins. Seven composite resin brands were tested and 30 specimens, 3-mm in diameter and 2-mm thick, of each material were fabricated, for a total of 210 specimens. The specimens of each tested material were divided into three subgroups (n=10) according to the bleaching therapy tested: 20% hydrogen peroxide gel, 35% hydroxide peroxide gel, and the control group. The baseline color, opacity, and fluorescence were assessed by spectrophotometry. Four 30-minute bleaching gel applications, two hours in total, were performed. The control group did not receive bleaching treatment and was stored in deionized water. Final assessments were performed, and data were analyzed by two-way analysis of variance and Tukey tests (p&lt;0.05). Color changes were significant for different tested bleaching therapies (p&lt;0.0001), with the greatest color change observed for 35% hydrogen peroxide gel. No difference in opacity was detected for all analyzed parameters. Fluorescence changes were influenced by composite resin brand (p&lt;0.0001) and bleaching therapy (p=0.0016) used. No significant differences in fluorescence between different bleaching gel concentrations were detected by Tukey test. The greatest fluorescence alteration was detected on the brand Z350. It was concluded that 35% hydrogen peroxide bleaching gel generated the greatest color change among all evaluated materials. No statistical opacity changes were detected for all tested variables, and significant fluorescence changes were dependent on the material and bleaching therapy, regardless of the gel concentration.


2006 ◽  
Vol 14 (spe) ◽  
pp. 3-9 ◽  
Author(s):  
Carel Leon Davidson

This article describes the properties, advances and shortcomings of glass-ionomer cement as a restorative material. The adhesion of glass-ionomer to tooth structure is less technique sensitive than composite resins and its quality increases with time. Therefore glass-ionomer might turn out to the more reliable restorative material in minimal invasive dentistry based on adhesive techniques.


Sign in / Sign up

Export Citation Format

Share Document