Endocrine influence on disease outcome: Experimental findings and implications

1984 ◽  
Vol 28 (5) ◽  
pp. 429-438 ◽  
Author(s):  
B. Bohus
1984 ◽  
Vol 23 (02) ◽  
pp. 87-91 ◽  
Author(s):  
K. Flemming

SummaryIn the beginning of medical radiology, only the benefit of ionizing radiation was obvious, and radiation was handled and applied generously. After late effects had become known, the radiation exposure was reduced to doses following which no such effects were found. Thus, it was assumed that one could obtain an optimal medical benefit without inducing any hazard. Later, due to experimental findings, hypotheses arose (linear dose-effect response, no time factor) which led to the opinion that even low and lowest radiation doses were relevant for the induction of late effects. A radiation fear grew, which was unintentionally strengthened by radiation protection decrees: even for low doses a radiation risk could be calculated. Therefore, it was believed that there could still exist a radiation hazard, and the radiation benefit remained in question. If, however, all presently known facts are considered, one must conclude that large radiation doses are hazardous and low doses are inefficient, whereas lowest doses have a biopositive effect. Ionizing radiation, therefore, may cause both, hazard as well as benefit. Which of the two effects prevails is determined by the level of dose.


1978 ◽  
Vol 39 (02) ◽  
pp. 455-465 ◽  
Author(s):  
Yvonne Stirling ◽  
D J Howarth ◽  
Marguerite Vickers ◽  
W R S North ◽  
T W Meade

SummaryTwo automated methods for two-stage factor VIII assays have been compared with one another, and evaluated in practice. The Depex method records the clotting time when an electric circuit is completed by the formation of a fibrin thread across a hook-type electrode; the Electra method is based on an optical density technique of clot detection. The two methods gave comparable results for measured levels of factor VIII when haemophilic or “normal” plasmas were assayed. Results from the two methods in practice also suggest that both are valid at low and “normal” factor VIII levels. The Electra method is also probably suitable for assays of concentrates; however, the Depex method appears to give falsely high values in these circumstances, and experimental findings suggest that the reason may be that increased viscosity due to the high fibrinogen levels in factor VIII concentrates causes premature closure of the circuit between the two ends of the Depex electrode. The main advantage of the Depex method is that, provided 3 or 4 machines are available, a given number of assays can be completed more quickly than on Electra. The main advantages of Electra are that it is probably subject to less laboratory error than Depex, and that it is suitable for assaying concentrates as well as haemophilic and “normal” plasmas.


1968 ◽  
Vol 19 (03/04) ◽  
pp. 584-592 ◽  
Author(s):  
Hanna Lukasiewicz ◽  
S Niewiarowski

Summary and Conclusion1. It has been found that EACA does not inhibit activation of human plasminogen into plasmin by SK and UK in a concentration of 5 × 10–2 M. The activation of bovine plasminogen by SK and UK is inhibited by this concentration of EACA but not by a lower one.2. EACA in concentrations of 1,5 × 10–1 – 10–4 M does not inhibit casein proteolysis by plasmin. The proteolysis of fibrinogen and fibrin measured by the release of TCA soluble tyrosine is inhibited by EACA in concentrations of 1,5 × 10–1 – 10–2 M.3. The lysis of non-stabilized clots by plasmin measured in a test tube was inhibited by an EACA concentration of 5 × 10–3 – 5 × 10–4 M. The lysis of stabilized clots by plasmin was inhibited by an EACA concentration of 10–5 M.4. On the basis of experimental findings and data given in literature the authors postulate that the mechanism of the antifibrinolytic effects of EACA consists mainly in a modification of plasmin action on fibrin. These effects are dependent on the structure of the fibrin clots.


1973 ◽  
Vol 34 (4) ◽  
pp. 1146-1161 ◽  
Author(s):  
Alfonso Paredes ◽  
William R. Hood ◽  
Harry Seymour ◽  
Maury Gollob

Sign in / Sign up

Export Citation Format

Share Document