A study of hand vibration on chipping and grinding operators, part II: Four-degree-of-freedom lumped parameter model of the vibration response of the human hand

1984 ◽  
Vol 95 (4) ◽  
pp. 499-514 ◽  
Author(s):  
D.D. Reynolds ◽  
R.J. Falkenberg
Author(s):  
Nicolas V. Jaumard ◽  
Hassam A. Baig ◽  
Benjamin B. Guarino ◽  
Beth A. Winkelstein

Whole body vibration (WBV) can induce a host of pathologies, including muscle fatigue and neck and low back pain [1,2]. A new model of WBV in the rat has been developed to define relationships between WBV exposures, kinematics, and behavioral sensitivity (i.e. pain) [3]. Although in vivo studies provide valuable associations between biomechanics and physiology, they are not able to fully define the mechanical loading of specific spinal regions and/or the tissues that may undergo injurious loading or deformation. Mathematical models of seated humans and primates have been used to estimate spinal loads and design measures that mitigate them during WBV [4–6]. Although such models provide estimates of relative spinal motions, they have limited utility for relating potentially pathological effects of vibration-induced kinematics and kinetics since those models do not enable simultaneous evaluation of relevant spinal tissues with the potential for injury and pain generation. As such, the goal of this work was to develop and validate a three degree of freedom (3DOF) lumped-parameter model of the prone rat undergoing WBV directed along the long-axis of the spine. The model was constructed with dimensions of a generalized rat and model parameters optimized using kinematics over a range of frequencies. It was validated by comparing predicted and measured transmissibility and further used to predict spinal extension and compression, as well as acceleration, during WBV for frequencies known to produce resonance in the seated human and pain in the rat [3,7].


1986 ◽  
Vol 108 (2) ◽  
pp. 313-318 ◽  
Author(s):  
A. Sinha ◽  
J. H. Griffin ◽  
R. E. Kielb

This paper deals with the stabilizing effects of dry friction on torsional blade flutter. A lumped parameter model with single degree of freedom per blade has been used to represent the rotor stage. The well-known cascade theories for incompressible and supersonic flows have been used to determine the allowable increase in fluid velocity relative to the blade. It has been found that the effectiveness of friction dampers in controlling flutter can be substantial.


2012 ◽  
Vol 226-228 ◽  
pp. 124-128
Author(s):  
Ai Lun Wang ◽  
Hui Long ◽  
Qiang Huang ◽  
Qian Jin Wang

The group number and group coupling stiffness are important structural parameters of the grouped blade-disk. This work examines how the group number and group coupling stiffness affect the vibration response localization of tuned grouped blade-disk. The lumped parameter model of the grouped blade-disk was established, and the vibration equation was derived. The vibration response localization factors of tuned grouped blade-disks were obtained at the different group number and group coupling stiffness, and the effects of group number and group coupling stiffness on vibration response localization was analyzed. The results show that the vibration localization appears in the tuned grouped blade-disk and the degree of vibration response localization reduces with the increasing of group number and group coupling stiffness. The results can help to completely reveal the localization mechanism of the grouped blade-disk


2016 ◽  
Vol 78 (6-10) ◽  
Author(s):  
K.A.M. Rezali ◽  
A. As’arry ◽  
Z.A. Zulkefli ◽  
R. Samin ◽  
N.A.A. Jalil

Assessing a glove for its ability to reduce vibration transmitted to the hand can be improved if the transmissibility of the glove to the hand can be predicted. This study proposes a simple lumped parameter model of the hand and the glove for predicting the transmissibility of a glove to the hand. The model of the hand consists of three main body segments: the palm, the fingers, and the palm tissues, connected via translational and rotational springs and dampers. The glove material was represented by translational spring and damper. The results showed that the glove transmissibility predicted using the model overestimated the glove transmissibility measured experimentally at frequencies greater than 62 Hz, implying that a simple three degree-of-freedom model of the hand and the glove may not be able to provide a reasonable prediction of glove transmissibility.


2011 ◽  
Vol 86 ◽  
pp. 263-267 ◽  
Author(s):  
Hui Liu ◽  
Zhong Chang Cai ◽  
Chang Le Xiang ◽  
Ming Zheng Wang

On the basis of lumped parameter model and the Lagrange method, the model of powertrain was built. Resonance vibration response and non-resonance vibration response were calculated respectively in time domain and frequency domain, characteristics of forced torsional vibration in steady–state were concluded. Comparability and difference of response of parts in different stage were explained. Multi-object optimization was applied to reduce vibration.


Author(s):  
Oreoluwa Alabi ◽  
Sunit Kumar Gupta ◽  
Oumar Barry

Abstract Studies have shown that isolators in the form of anti-vibration gloves effectively reduce the transmission of unwanted vibration from vibrating equipment to the human hand. However, as most of these studies are based on experimental or modeling techniques, the level of effectiveness and optimum glove properties for better performance remains unclear. To fill this gap, hand-arm system dynamics with and without gloves are studied analytically in this work. In the current work, we use a lumped parameter model of the hand-arm system, with hand-tool interaction modeled as a linear spring-damper system. The resulting governing equations of motion are solved analytically using the method of harmonic balance. Parametric analysisis performed on the biomechanical model of the hand-armsystem with and without a glove to identify key design pa-rameters. It is observed that the effect of glove parameters on its performance is not repetitive and changes in the studied different frequency ranges. This observation further motivates us to optimize the glove parameters to minimize the overall transmissibility in different frequency ranges.


Author(s):  
Liang Li ◽  
Liming Wang ◽  
Shao Yimin ◽  
Yilin Yuan

The chatter marks may be caused by the roll misalignment during the grinding process of roll grinder, which can affect the quality of the roll surface of the strip steel. Based on a doubly regenerative time delay grinding model, a 2-degree-of-freedom lumped parameter model of a roll grinder with the roll misalignment fault is presented to investigate the effect of a roll misalignment on its vibration responses. A Runge-Kutta numerical integration method is applied to calculate the vibration response from the presented model. The effects of the roll misalignment and the rolling speed are investigated. Moreover, an experiment setup is presented. Numerical results from the presented model are compared with experimental results to validate the presented model. It seems that the results may provide some guidance for the detection of the misalignment fault and monitoring of the operation state of the roll grinder.


2021 ◽  
Vol 13 (11) ◽  
pp. 168781402110626
Author(s):  
Shuguang Zhang ◽  
Wenku Shi ◽  
Zhiyong Chen

The low frequency vibration of the vehicle in motion has a great influence on the ride comfort of occupants. The research on the vibration response characteristics of human body plays a great role in analyzing and improving ride comfort. The purpose of this study was to investigate the parameter identification of seated human body dynamic model. A seven-degree-of-freedom (DOF) lumped parameter model was established to describe the vibration response characteristics of human body. The derivation processes of apparent mass (AM) and seat to head transmissibility (STHT) were performed. After the theoretical calculation of the human body vibration characteristics, we used several different evolutionary algorithms to identify the 23 parameters of the model, including the mass, stiffness and damping parameters. By comparing the results of the five optimization algorithms and comprehensively analyzing the convergence and distribution of the non-dominated solution set, we found that the reference vector guided evolutionary algorithm (RVEA) shows good competitiveness in solving many-objective optimization problem (MaOP), that is, parameter identification of seated human body model in this paper. The AM and STHT calculated by model identification were compared with their measured by experiment. The result shows that the selected seven-DOF model can well describe the vertical vibration characteristics of seated human body and the identification method used in this paper can accurately identify the parameters of lumped parameter model, which provides convenience for the establishment of a complete “road-vehicle-seat-human body” system dynamic model.


Author(s):  
Matthew Hall

Abstract MoorDyn, an open-source mooring dynamics model, is being expanded with capabilities for additional mooring system features and load cases. As floating wind turbine technology matures, mooring systems are becoming more sophisticated and more complex scenarios need to be considered in the design process. Mooring systems may have synthetic line materials, ballast/buoyancy bodies along the lines, or interconnections between platforms. Failure modes may involve multiple cascading line failures that depend on mooring system dynamics. Features recently added to MoorDyn aim to address these emerging needs. MoorDyn’s linear elasticity model has been supplemented to support user-defined stress-strain curves, which can be adjusted to represent synthetic mooring materials. Rigid six-degree-of-freedom bodies in the mooring system can now be modeled using two new model objects. “Rod” objects provide an option for rigid cylindrical bodies. They use the existing Morison equation-based hydrodynamics model and can be connected to mooring lines at either end. “Body” objects provide a generic six-degree-of-freedom rigid-body representation based on a lumped-parameter model of translational and rotational properties. Rod objects can be added to Body objects and mooring lines can be attached at any location, allowing a wide variety of submerged structures to be integrated into the mooring system. Lastly, a means of dynamically simulating mooring line failures has been implemented. These new features, currently in the C++ version of MoorDyn, are described and then demonstrated on a two-turbine shared-mooring array. A qualitative view of the results suggests the new features are functioning as expected.


Sign in / Sign up

Export Citation Format

Share Document