Actions of oestrogens and antioestrogens on rat mammary gland development: Relevance to breast cancer prevention

1988 ◽  
Vol 30 (1-6) ◽  
pp. 95-103 ◽  
Author(s):  
R.I. Nicholson ◽  
K.E. Gotting ◽  
J. Gee ◽  
K.J. Walker
2006 ◽  
Vol 13 (2) ◽  
pp. 335-355 ◽  
Author(s):  
F Labrie

Breast cancer is the most frequently diagnosed and the second cause of cancer death in women, thus making breast cancer a most feared disease. Since breast cancer metastasizes early and it is unlikely that improvements in the treatment of metastatic disease could permit a cure in most cases in the foreseeable future, it is clear that prevention is essential in order practically to eliminate deaths from breast cancer. Tamoxifen is the only selective estrogen receptor modulator (SERM) currently registered for use in breast cancer prevention; the tamoxifen versus raloxifene study should indicate the efficacy of this compound compared with raloxifene. The recent benefits of aromatase inhibitors over tamoxifen indicate the advantages of a blockade of estrogens more complete than the one achieved with tamoxifen, a SERM having some estrogenic activity in the mammary gland and an even higher estrogenic action in the uterus. However, it is unlikely that the general estrogen ablation achieved with aromatase inhibitors will be acceptable for the long-term use required for prevention. It is thus important to develop SERMs with highly potent and pure antagonistic activity in the mammary gland and uterus while possessing estrogen-like activity in tissues of particular importance for women’s health, namely the bones and the cardiovascular system. However, it is expected that a SERM alone will not meet all the requirements of women’s health at the postmenopause when ovarian estrogen secretion has ceased and peripheral formation of androgens and estrogens from DHEA by intracrine mechanisms is decreased by 60% or more. One possibility is to combine a SERM with DHEA, a precursor of sex steroids that permits, somewhat like SERMs, tissue-specific formation of androgens and/or estrogens according to the level of expression of the steroidogenic and steroid-inactivating enzymes. DHEA could thus compensate for the important loss of androgens that accompanies aging and could also permit sex steroid formation and action in the brain while breast cancer prevention would be achieved by the SERM.


2000 ◽  
pp. 257-269 ◽  
Author(s):  
R Kumar ◽  
R K Vadlamudi ◽  
L Adam

Homeostasis in normal tissue is regulated by a balance between proliferative activity and cell loss by apoptosis. Apoptosis is a physiological mechanism of cell loss that depends on both pre-existing proteins and de novo protein synthesis, and the process of apoptosis is integral to normal mammary gland development and in many diseases, including breast cancer. The mammary gland is one of the few organ systems in mammals that completes its morphologic development postnatally during two discrete physiologic states, puberty and pregnancy. The susceptibility of the mammary gland to tumorigenesis is influenced by its normal development, particularly during stages of puberty and pregnancy that are characterized by marked alterations in breast cell proliferation and differentiation. Numerous epidemiologic studies have suggested that specific details in the development of the mammary gland play a critical role in breast cancer risk. Mammary gland development is characterized by dynamic changes in the expression profiles of Bcl-2 family members. The expression of Bcl-2 family proteins in breast cancer is also influenced by estradiol and by progestin. Since the ratio of proapoptotic to antiapoptotic proteins determines apoptosis or cell survival, hormone levels may have important implications in the therapeutic prevention of breast cancer.


2004 ◽  
Vol 7 (9) ◽  
Author(s):  
H. A. Coppock ◽  
R. B. Clarke

Tissue-specific stem cells play a key role in organ homoeostasis. They are relatively well characterized in systems which undergo constant proliferation and production of differentiated cells, including the haemopoietic system, skin and intestine. However, little is known about the role and regulation of stem cells in the mammary gland. This review briefly summarizes the current understanding of the role of breast-specific stem cells in normal and cancerous tissues, and how this may identify new targets for breast cancer prevention and therapy.


Sign in / Sign up

Export Citation Format

Share Document