Gene Targets of C/EBPB Involved in Mammary Gland Development and Breast Cancer

2003 ◽  
Author(s):  
Sandra L. Grimm ◽  
Jeffrey Rosen
2000 ◽  
pp. 257-269 ◽  
Author(s):  
R Kumar ◽  
R K Vadlamudi ◽  
L Adam

Homeostasis in normal tissue is regulated by a balance between proliferative activity and cell loss by apoptosis. Apoptosis is a physiological mechanism of cell loss that depends on both pre-existing proteins and de novo protein synthesis, and the process of apoptosis is integral to normal mammary gland development and in many diseases, including breast cancer. The mammary gland is one of the few organ systems in mammals that completes its morphologic development postnatally during two discrete physiologic states, puberty and pregnancy. The susceptibility of the mammary gland to tumorigenesis is influenced by its normal development, particularly during stages of puberty and pregnancy that are characterized by marked alterations in breast cell proliferation and differentiation. Numerous epidemiologic studies have suggested that specific details in the development of the mammary gland play a critical role in breast cancer risk. Mammary gland development is characterized by dynamic changes in the expression profiles of Bcl-2 family members. The expression of Bcl-2 family proteins in breast cancer is also influenced by estradiol and by progestin. Since the ratio of proapoptotic to antiapoptotic proteins determines apoptosis or cell survival, hormone levels may have important implications in the therapeutic prevention of breast cancer.


Endocrinology ◽  
2015 ◽  
Vol 156 (10) ◽  
pp. 3442-3450 ◽  
Author(s):  
Cathrin Brisken ◽  
Kathryn Hess ◽  
Rachel Jeitziner

Worldwide, breast cancer incidence has been increasing for decades. Exposure to reproductive hormones, as occurs with recurrent menstrual cycles, affects breast cancer risk, and can promote disease progression. Exogenous hormones and endocrine disruptors have also been implicated in increasing breast cancer incidence. Numerous in vitro studies with hormone-receptor-positive cell lines have provided insights into the complexities of hormone receptor signaling at the molecular level; in vivo additional layers of complexity add on to this. The combined use of mouse genetics and tissue recombination techniques has made it possible to disentangle hormone action in vivo and revealed that estrogens, progesterone, and prolactin orchestrate distinct developmental stages of mammary gland development. The 2 ovarian steroids that fluctuate during menstrual cycles act on a subset of mammary epithelial cells, the hormone-receptor-positive sensor cells, which translate and amplify the incoming systemic signals into local, paracrine stimuli. Progesterone has emerged as a major regulator of cell proliferation and stem cell activation in the adult mammary gland. Two progesterone receptor targets, receptor activator of NfκB ligand and Wnt4, serve as downstream paracrine mediators of progesterone receptor-induced cell proliferation and stem cell activation, respectively. Some of the findings in the mouse have been validated in human ex vivo models and by next-generation whole-transcriptome sequencing on healthy donors staged for their menstrual cycles. The implications of these insights into the basic control mechanisms of mammary gland development for breast carcinogenesis and the possible role of endocrine disruptors, in particular bisphenol A in this context, will be discussed below.


2014 ◽  
Vol 39 (6) ◽  
pp. 699-706 ◽  
Author(s):  
Breanne M. Anderson ◽  
Mira B. MacLennan ◽  
Lyn M. Hillyer ◽  
David W.L. Ma

There is growing evidence that early developmental periods may importantly influence future breast cancer risk. Also, there is great interest in the role of dietary fat in breast cancer risk, but the role of dietary fat during pubertal mammary gland development remains poorly understood. This study investigated the effect of n-3 polyunsaturated fatty acids (PUFA) using complementary dietary and genetic approaches to examine the effect of lifelong exposure of n-3 PUFA or n-6 PUFA (control) on mammary gland development and fatty acid composition. n-3 PUFA from both diet and genetics were enriched in mammary glands as early as 3 weeks of age. Parameters related to mammary gland development, including number of terminal end buds (TEB), percent coverage of ductal tree, and infiltration of TEB, were influenced by n-3 PUFA at 3 and 4 weeks of age. Overall, findings suggest that n-3 PUFA incorporation into the mammary gland early in life plays a role in the morphological development of the mammary gland during puberty.


Sign in / Sign up

Export Citation Format

Share Document