Ethanol-induced inhibition of testosterone biosynthesis in rat Leydig cells: Role of culture medium composition

1989 ◽  
Vol 33 (6) ◽  
pp. 1243-1248 ◽  
Author(s):  
Arto K. Orpana ◽  
C.J.Peter Eriksson ◽  
Matti Härkönen
2020 ◽  
Vol 154 ◽  
pp. 31-42
Author(s):  
Jie Zhao ◽  
Hua Yang ◽  
Mingtian Deng ◽  
Jianyu Ma ◽  
Zhibo Wang ◽  
...  

Steroids ◽  
2011 ◽  
Vol 76 (7) ◽  
pp. 682-689 ◽  
Author(s):  
Syed A. Latif ◽  
Mae Shen ◽  
Ren-Shan Ge ◽  
Chantal M. Sottas ◽  
Matthew P. Hardy ◽  
...  

1990 ◽  
Vol 36 (5) ◽  
pp. 473-478 ◽  
Author(s):  
Arto K. Orpana ◽  
Mauri M. Orava ◽  
Reijo K. Vihko ◽  
Matti Härkönen ◽  
C.J.Peter Eriksson

1990 ◽  
Vol 36 (6) ◽  
pp. 603-608 ◽  
Author(s):  
Arto K. Orpana ◽  
Mauri M. Orava ◽  
Reuo K. Vihko ◽  
Math Härkönen ◽  
C.J.Peter Eriksson

1991 ◽  
Vol 125 (3) ◽  
pp. 280-285 ◽  
Author(s):  
J. Alan Talbot ◽  
Ann Lambert ◽  
Robert Mitchell ◽  
Marek Grabinski ◽  
David C. Anderson ◽  
...  

Abstract We have investigated the role of Ca2+ in the control of FSH-induced estradiol secretion by Sertoli cells isolated from 8-10 days old rats. Exogenous Ca2+ (4-8 mmol/1) inhibited FSH-stimulated E2 secretion such that, with 8 mmol/l Ca2+ and FSH (8 IU/l) E2 secretion decreased from 2091±322 to 1480±84 pmol/l (p<0.002), whilst chelation of Ca2+ in the culture medium with EGTA (3 mmol/l) increased E2 secretion from 360±45 to 1242±133 pmol/l) in the absence of FSH. Further, EGTA (3 mmol/l) markedly potentiated FSH (8 IU/l), forskolin (1 μmol/l) and dibutyryl cAMP (1 mmol/l)-stimulated E2 secretion. Addition of the Ca2+ ionophores, ionomycin (2-5 μmol/l) and A23187 (2 μmol/l), inhibited FSH (8 IU/l)-stimulated E2 secretion by >80%. The effect of ionomycin was totally reversible, whereas that of A23187 was irreversible. Ionomycin (5 μmol/l) had no effect on EGTA-induced E2 secretion in the absence of FSH, but reduced EGTA-provoked E2 secretion by 59% in the presence of FSH (8 IU/l). Similarly, forskolin- and dibutyryl cAMP-provoked E2 production was inhibited 46-50% by ionomycin (5 μmol/l). We conclude that FSH-induced E2 secretion from immature rat Sertoli cells is modulated by intra- and extracellular Ca2+.


Agrologia ◽  
2018 ◽  
Vol 1 (1) ◽  
Author(s):  
S. Tuhuteru ◽  
Meity L Hehanussa ◽  
Simon H.T Raharjo

Dendrobium anosmum is one of natural orchids in Indonesia. Optimization of medium composition for orchid propagation through in vitro culture is necessary to enhance propagule multiplication capabilities and quality. This study was aimed to study the influence of concentration of coconut water in culture medium on in vitro growth and development of D. anosmum orchid species and to determine the optimal coconut water concentration in culture media.  The experiment were arranged in a Completely Randomized Design with four treatments and eight replications. The treatments consisted of the addition of coconut water with concentrations: 0 ml•l -1 (control), 50 ml•l-1, 100 ml•l-1 and 150 ml•l-1. The results showed that addition of coconut water in culture medium gave different effect on shoot growth and multiplication of D. anosmum orchids.  Coconut water concentration of 100 ml•l-1 was the best concentration for growth and multiplication of D. anosmum orchids, based on both shoots and roots growth, plantlet height and wet weight.


Author(s):  
Bruna O. S. Câmara ◽  
Bruno M. Bertassoli ◽  
Natália M. Ocarino ◽  
Rogéria Serakides

The use of stem cells in cell therapies has shown promising results in the treatment of several diseases, including diabetes mellitus, in both humans and animals. Mesenchymal stem cells (MSCs) can be isolated from various locations, including bone marrow, adipose tissues, synovia, muscles, dental pulp, umbilical cords, and the placenta. In vitro, by manipulating the composition of the culture medium or transfection, MSCs can differentiate into several cell lineages, including insulin-producing cells (IPCs). Unlike osteogenic, chondrogenic, and adipogenic differentiation, for which the culture medium and time are similar between studies, studies involving the induction of MSC differentiation in IPCs differ greatly. This divergence is usually evident in relation to the differentiation technique used, the composition of the culture medium, the cultivation time, which can vary from a few hours to several months, and the number of steps to complete differentiation. However, although there is no “gold standard” differentiation medium composition, most prominent studies mention the use of nicotinamide, exedin-4, ß-mercaptoethanol, fibroblast growth factor b (FGFb), and glucose in the culture medium to promote the differentiation of MSCs into IPCs. Therefore, the purpose of this review is to investigate the stages of MSC differentiation into IPCs both in vivo and in vitro, as well as address differentiation techniques and molecular actions and mechanisms by which some substances, such as nicotinamide, exedin-4, ßmercaptoethanol, FGFb, and glucose, participate in the differentiation process.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Mongillo ◽  
M Franzoso ◽  
V Prando ◽  
L Dokshokova ◽  
A Di Bona ◽  
...  

Abstract Background Sympathetic neurons (SNs) innervate the myocardium with a defined topology that allows physiological modulation of cardiac activity. Neurotrophins released by cardiac cells control SN viability and myocardial distribution, which are impaired in heart diseases with reduced (e.g. heart failure) or heterogenous sympathetic stimulation (e.g. arrhythmias). We previously demonstrated that SNs interact directly with cardiomyocytes (CMs) at neuro-cardiac junctions (NCJ), and such structured contact sites allow neurons to efficiently activate β-adrenoceptors on the myocyte membrane. Aims We here asked whether NCJs are functional for retrograde (myocyte to neuron) neurotrophic signaling. Methods and results Electron microscopy and immunofluorescence on mouse heart slices and SN/CM co-cultures showed that the NGF receptor, TrkA, is preferentially found in correspondence of the NCJ. Consistently, neurons taking structured contact with CMs showed fast TrkA activation and its retrograde transport to the soma, which was monitored using live confocal imaging in cells expressing TrkA-RFP. In accord with NGF dependent effects, CM-contacted SN showed larger synaptic varicosities and did not require NGF supplementation in the culture medium. In support that NGF locally released at NCJs sustains SN viability, the neurotrophin concentration in the culture medium was 1.61 pg/mL, and did not suffice to maintain neuronal viability, which was also perturbed (66% decrease of neuronal density) by silencing NGF expression in CMs. These results support that the NCJ is essential for intercellular neurotrophin signaling. Consistently, by applying competitive inhibition of TrkA with increasing doses of K252a, we estimated NGF concentration at the contact site to be about 1000-fold higher than that released by CM in the culture medium. To seek for the structural determinants of the NCJ, we focused on dystrophin, based on the finding that the protein accumulates on the CM membrane portion contacted by SNs, as observed in mouse heart slices, and co-cultured CMs. In support of a role of CM-expressed dystrophin in neurotrophic signaling, hearts from dystrophin-KO (mdx) mice showed 74.36% decrease of innervation, with no significant changes of NGF expression. In line with the purported role of NCJs, in co-cultures between wild type SNs and mdx CMs, TrkA activation (TrkA movements toward SN soma (%): WTCM-WTSN=18±4; MDXCM-WTSN= 12±3; p&lt;0,05) and neuronal survival were reduced. Conclusions Taken together, our results suggest that NGF-dependent signaling to SNs requires a direct and specialized interaction with myocytes, and that loss of dystrophin at the CM membrane impairs retrograde signaling to the neurons leading to cardiac sympathetic dys-innervation. Funding Acknowledgement Type of funding source: Public Institution(s). Main funding source(s): University of Padova


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xu Zhou ◽  
Jingliang He ◽  
Jinbo Chen ◽  
Yu Cui ◽  
Zhenyu Ou ◽  
...  

Abstract Background Leydig cells reflect the activation of inflammation, decrease of androgen production, inhibition of cell growth and promotion of cell apoptosis under orchitis. Maternally expressed gene 3 (MEG3) exerts a crucial role in various human diseases, but under orchitis, the role and underlying molecular mechanism of MEG3 in Leydig cells remain unclear. Methods Lipofectamine 2000 was used for the cell transfections. qPCR and western blots assay were applied to assess the gene expression. ELISA assay was used to measure the TNFα, IL6 and testosterone secretion. CCK8 and EdU assay was employ to test the cell viability and proliferation respectively. Luciferase reporter and RIP assay were introduced to detect the binding of miR-93-5p with MEG3 and PTEN. Results Lipopolysaccharides (LPS) induced TNFα and IL6 secretion, lowered testosterone production, inhibited cell viability and proliferation, and induced cell apoptosis in Leydig cells. MEG3 was upregulated in Leydig cells treated with LPS and that knockdown of MEG3 inhibited the role of LPS in Leydig cells. MEG3 absorbed miR-93-5p and that suppression of miR-93-5p restored the role of silenced MEG3 in Leydig cells under LPS treatment. miR-93-5p inhibited PTEN expression and that over-expressed PTEN alleviated the effect of miR-93-5p in Leydig cells treated with LPS. LPS activated the MEG3/miR-93-5p/PTEN signalling pathway in Leydig cells. Conclusions This study revealed that MEG3 serves as a molecular sponge to absorb miR-93-5p, thus leading to elevation of PTEN expression in Leydig cells under LPS treatment, offering a theoretical basis on which to establish potential new treatment strategies for orchitis.


Sign in / Sign up

Export Citation Format

Share Document