Fenitization of layered mafic rocks in the Lillebukt alkaline complex, Stjernoy, Norway

Lithos ◽  
1980 ◽  
Vol 13 (2) ◽  
pp. 215 ◽  
Author(s):  
K. Kjøsnes
Keyword(s):  
Author(s):  
David A. Holwell ◽  
Daryl E. Blanks

Abstract Magmatic Ni-Cu-PGE sulfide mineralisation is mostly confined to tholeiitic to komatiitic mafic-ultramafic intrusions, yet there have been an increasing number of occurrences recorded in alkaline-ultramafic, post-collisional magmatic systems, particularly in the lower and middle crust that generally display a characteristic Cu-Au-Te enrichment over more conventional Ni-Cu(-PGE) mineralisation. The Mordor Alkaline Igneous Complex, Australia, is a mid-crustal, zoned alkaline complex comprised of a syenite body with an alkaline mafic-ultramafic subcomplex containing dunites, wehrlites and shonkinites. Sulfide mineralisation is present either in thin, PGE-enriched stratiform ‘reefs’ within layered ultramafics in the centre of the subcomplex, or in thicker zones of Cu(-Au-PGE-Te) sulfide hosted by phlogopite-rich shonkinites towards the intrusion margins. This latter style comprises blebs of pyrite, chalcopyrite and minor millerite and PGE tellurides formed from the cooling of a Cu-dominant sulfide liquid. Primary igneous calcite is present in intimate association with the sulfide. We note that the circular nature of the complex, with a dunite core and shonkinite rim with chalcophile element mineralisation, is comparable to the pipe-like, intracratonic, alkaline-ultramafic Aldan Shield intrusions in Russia. As such, Mordor may have an intracratonic rather than post-collisional affinity. Nevertheless, sulfide mineralisation is typical of other alkaline-hosted occurrences, with a Cu-Au-Te-rich signature, low Ni contents and textural association with calcite, supporting models of chalcophile metal and S fluxing alongside carbonate in alkaline systems derived from low degrees of partial melting of hydrous and carbonated mantle sources. Mordor illustrates that alkaline igneous rocks are prospective for magmatic Cu-Au-PGE-Ni sulfide mineralisation, and the classic ‘marginal base metal– and sulfide-rich’ and ‘stratiform PGE-rich and sulfide-poor’ mineralisation styles may both be found in such intrusions.


2006 ◽  
Vol 70 (3) ◽  
pp. 241-256 ◽  
Author(s):  
R.G. Cawthorn ◽  
N. McKenna

AbstractMafic rocks of the Bushveld Complex at the southeastern end of the western limb, intersected in bore core from the Cullinan Diamond Mine, are described. A 260 m thick ultramafic body of orthopyroxene and chromite cumulate rocks, with mg# – 100*Mg/(Mg+Fe) – values from 77 to 84 and 0.25 to 0.5% Cr2O3 in the pyroxene, is considered to have affinity to the Critical Zone. Such an interpretation considerably extends the eastern limit of Critical Zone rocks of the western limb of the Bushveld Complex. The whole-rock composition of the lower, chilled basal contact of this body has 10% MgO and 500 ppm Cr, and is comparable to magmas considered parental to the Bushveld Complex. Due to intrusion of a younger sill, the upper contact is not preserved in the bore core. The cumulate rocks have higher interstitial component, inferred from incompatible trace element abundances (Zr, Ti and K), than normal Critical Zone rocks, interpreted to be a result of more rapid cooling due to proximity to the basal contact. The near-constancy of mg# in the pyroxene in the entire succession suggests that large volumes of magma flowed through this conduit, with only the liquidus phases of orthopyroxene and chromite being precipitated.Five generations of sills, intruded into the underlying metasedimentary rocks, are identified. The oldest is tholeiitic, and was metamorphosed prior to the emplacement of the Bushveld Complex. The second equates to the magma proposed as being parental to the Bushveld Complex (2060 Ma). The third represents the products of differentiation of that magma. The fourth is syenitic, and related to the Pienaars River Alkaline Complex (1430–1300 Ma). The fifth is tholeiitic (1150 Ma), and cuts the Cullinan kimberlite.


Author(s):  
Jens Konnerup-Madsen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Konnerup-Madsen, J. (2001). A review of the composition and evolution of hydrocarbon gases during solidification of the Ilímaussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin, 190, 159-166. https://doi.org/10.34194/ggub.v190.5187 _______________ Fluid inclusions in minerals from agpaitic nepheline syenites and hydrothermal veins in the Ilímaussaq complex and in similar agpaitic complexes on the Kola Peninsula, Russia, are dominated by hydrocarbon gases (predominantly methane) and hydrogen. Such volatile compositions differ considerably from those of most other igneous rocks and their formation and entrapment in minerals reflects low oxygen fugacities and a wide range of crystallisation temperatures extending to a low-temperature solidus. Their composition reflects initial low carbon contents and high water contents of the magma resulting in the exsolution of a waterrich CO2–H2O dominated vapour phase. Fractionation of chlorides into the vapour phase results in high salinities and the subsequent development of a heterogeneous vapour phase with a highly saline aqueous-rich fraction and a methane-dominated fraction, with preferential entrapment of the latter, possibly due to different wetting characteristics. The light stable isotope compositions support an abiogenic origin for the hydrocarbons in agpaitic nepheline syenite complexes.


Author(s):  
Ole V. Petersen ◽  
Alexander P. Khomyakov ◽  
Henning Sørensen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Petersen, O. V., Khomyakov, A. P., & Henning. (2001). Natrophosphate from the Ilímaussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin, 190, 139-141. https://doi.org/10.34194/ggub.v190.5184 _______________ The rare mineral natrophosphate has been identified for the first time in the Ilímaussaq alkaline complex in a drill core from the Kvanefjeld area. It occurs sparsely in zoned veinlets with cores of natrophosphate and borders of fibrous trona. The natrophosphate is more or less smoky, transparent and unaltered. The refractive index n = 1.448 ± 0.005 is low compared to that given for the material from the type locality, Khibina alkaline complex, Kola Peninsula; the unit cell parameter a = 27.76 ± 0.05 Å is in excellent agreement with that given for the material from the type locality. The veins occur in hyper-agpaitic naujakasite lujavrite; villiaumite is an associated mineral. Only a few water-soluble minerals have so far been found in the Ilímaussaq alkaline complex compared to the wealth of such minerals in the Khibina and Lovozero alkaline complexes. This is possibly at least partly due to lack of necessary precautions during sampling.


2021 ◽  
Vol 83 (6) ◽  
Author(s):  
Gianmaria Tortelli ◽  
Anna Gioncada ◽  
Carolina Pagli ◽  
Mauro Rosi ◽  
Laura De Dosso ◽  
...  

AbstractDuring continental rifting, strain and magmatism are believed to localize to narrow magmatic segments, while the rift margin is progressively abandoned. We integrate volcanological, geochemical, petrological and seismic data from the Ma’Alalta volcanic field (MVF) near the western margin of Afar, to show that the MVF is an active magmatic segment. Magmatism in MVF initiated with lava flows and large-volume, caldera-forming ignimbrites from a central edifice. However, the most recent magmatic activity shifted towards mafic lava fields, cinder cones and obsidian-rich silicic domes erupted from vents aligned NNW-SSE, defining a ~ 35-km-long magmatic segment. Along the same area, a NNW-SSE alignment of earthquakes was recorded by two local seismic networks (2005–2009 and 2011–2013). The geochemistry of the mafic rocks is similar to those of nearby axial volcanoes. Inferred magma storage depth from mineral geobarometry shows that a shallow, silicic chamber existed at ~ 5-km depth below the stratovolcano, while a stacked plumbing system with at least three magma storage levels between 9 and 24 km depth fed the recent basalts. We interpret the wide set of observations from the MVF as evidence that the area is an active magmatic segment, showing that localised axial extension can be heavily offset towards the rift margin.


2021 ◽  
Author(s):  
Qingbin Guan ◽  
Yongjiang Liu ◽  
Franz Neubauer ◽  
Sanzhong Li ◽  
Johann Genser ◽  
...  

2013 ◽  
Vol 54 (11) ◽  
pp. 1340-1351 ◽  
Author(s):  
D.P. Gladkochub ◽  
T.V. Donskaya ◽  
M.T.D. Wingate ◽  
A.M. Mazukabzov ◽  
S.A. Pisarevsky ◽  
...  

Lithos ◽  
2017 ◽  
Vol 294-295 ◽  
pp. 283-303 ◽  
Author(s):  
Mahyra Tedeschi ◽  
Pierre Lanari ◽  
Daniela Rubatto ◽  
Antônio Pedrosa-Soares ◽  
Jörg Hermann ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document