Suspended sediment transport in the surf zone: Response to cross-shore infragravity motion

1988 ◽  
Vol 80 (1-2) ◽  
pp. 61-79 ◽  
Author(s):  
Reginald A Beach ◽  
Richard W Sternberg
2021 ◽  
Vol 9 (11) ◽  
pp. 1300
Author(s):  
Troels Aagaard ◽  
Joost Brinkkemper ◽  
Drude F. Christensen ◽  
Michael G. Hughes ◽  
Gerben Ruessink

The existence of sandy beaches relies on the onshore transport of sand by waves during post-storm conditions. Most operational sediment transport models employ wave-averaged terms, and/or the instantaneous cross-shore velocity signal, but the models often fail in predictions of the onshore-directed transport rates. An important reason is that they rarely consider the phase relationships between wave orbital velocity and the suspended sediment concentration. This relationship depends on the intra-wave structure of the bed shear stress and hence on the timing and magnitude of turbulence production in the water column. This paper provides an up-to-date review of recent experimental advances on intra-wave turbulence characteristics, sediment mobilization, and suspended sediment transport in laboratory and natural surf zones. Experimental results generally show that peaks in the suspended sediment concentration are shifted forward on the wave phase with increasing turbulence levels and instantaneous near-bed sediment concentration scales with instantaneous turbulent kinetic energy. The magnitude and intra-wave phase of turbulence production and sediment concentration are shown to depend on wave (breaker) type, seabed configuration, and relative wave height, which opens up the possibility of more robust predictions of transport rates for different wave and beach conditions.


2002 ◽  
Vol 185 (3-4) ◽  
pp. 283-302 ◽  
Author(s):  
Troels Aagaard ◽  
Kerry P. Black ◽  
Brian Greenwood

1984 ◽  
Vol 1 (19) ◽  
pp. 120 ◽  
Author(s):  
R.W. Sternberg ◽  
N.C. Shi ◽  
John P. Downing

The suspended sediment distribution and longshore sediment transport characteristics at Leadbetter Beach, Santa Barbara, California were investigated using a series of miniature optical backseatter sensors which can measure particle concentrations as high as 180 gm/£ and have 10 Hz frequency response. Vertical arrays of sensors were maintained at up to four positions across the surf zone during 7-25 February 1980 and were operated concurrently with pressure sensors and current meters. Data were collected on a daily basis over 2-4 hour periods. The data were analyzed to reveal concentration profiles of suspended sediment, the average suspended sediment loads, and the longshore particle flux in relation to varying wave conditions. Results show that sediment transport occurs as individual suspension events related to incident wave motions and infragravity motion oscillations within the surf zone; suspended sediment concentration decreases approximately logarithimically away from the seabed; the maximum values of longshore transport rates occur in the mid-surf zone; and the measured suspended sediment longshore transport rate is equal to the total longshore transport rate as predicted by existing transport equations.


1984 ◽  
Vol 1 (19) ◽  
pp. 133 ◽  
Author(s):  
Bruce E. Jaffe ◽  
Richard W. Sternberg ◽  
Asbury H. Sallenger

Field measurements of suspended sediment-transport were made across a dissipative surf zone during a storm. A correlation between high suspended mass in the water column and periods of onshore flow caused a net onshore transport of suspended sediment even though the mean near-bottom flow was directed offshore. The observed onshore migration of a nearshore bar was predicted by gradients in the crossshore suspended-sediment transport.


Sign in / Sign up

Export Citation Format

Share Document