Contamination of coastal versus open ocean surface waters

1993 ◽  
Vol 26 (3) ◽  
pp. 128-134 ◽  
Author(s):  
W.Jackson Davis
2013 ◽  
Vol 118 (8) ◽  
pp. 3887-3894 ◽  
Author(s):  
Tian-Yu Chen ◽  
Johannes Rempfer ◽  
Martin Frank ◽  
Roland Stumpf ◽  
Mario Molina-Kescher

Nature ◽  
10.1038/40111 ◽  
1997 ◽  
Vol 389 (6654) ◽  
pp. 951-954 ◽  
Author(s):  
S. Emerson ◽  
P. Quay ◽  
D. Karl ◽  
C. Winn ◽  
L. Tupas ◽  
...  

2000 ◽  
Vol 12 (4) ◽  
pp. 414-417 ◽  
Author(s):  
Harvey Marchant ◽  
Andrew Davidson ◽  
Simon Wright ◽  
John Glazebrook

The concentrations of viruses, bacteria, chroococcoid cyanobacteria and chlorophyll a were determined in surface waters of the Southern Ocean during spring. Viral concentrations declined southward from around 4 × 106 ml−1 near Tasmania to a minimum of around 1 × 106 ml−1 at the Polar Front. South of the Front, virus concentrations increased again, reaching around 4 × 106 ml−1 in the sea-ice zone south of 60°S. Bacterial concentration decreased southwards across the Southern Ocean from around 6.5 × 105 ml−1 near Tasmania to < 1.0 × 105 ml−1 in the sea-ice zone. Cyanobacteria accounted for < 8% of the prokaryotes. There was no significant relationship between viral abundance and eithercyanobacterial or chl a concentration. Viral and bacterial concentrations were not significantly correlated north (P {0.10 < r < 0.20}) or south (P {0.20 < r < 0.5}) of the Polar Front. The virus to bacteria ratio (VBR) was between 3 and 15 in the open ocean but varied between 15 and 40 in the sea-ice region. These virus concentrations and VBRs indicate that viruses are no less important in Southern Ocean ecosystems than elsewhere in the world's oceans.


2013 ◽  
Vol 10 (11) ◽  
pp. 7207-7217 ◽  
Author(s):  
Y. Yamashita ◽  
Y. Nosaka ◽  
K. Suzuki ◽  
H. Ogawa ◽  
K. Takahashi ◽  
...  

Abstract. Chromophoric dissolved organic matter (CDOM) ubiquitously occurs in marine environments and plays a significant role in the marine biogeochemical cycles. Basin scale distributions of CDOM have recently been surveyed in the global ocean and indicate that quantity and quality of oceanic CDOM are mainly controlled by in situ production and photobleaching. However, factors controlling the spectral parameters of CDOM in the UV region, i.e., spectral slope of CDOM determined at 275–295 nm (S275–295) and the ratio of two spectral slope parameters (SR); the ratio of S275–295 to S350–400, have not been well documented. To evaluate the factor controlling the spectral characteristics of CDOM in the UV region in the open ocean, we determined the quantitative and qualitative characteristics of CDOM in the subarctic and subtropical surface waters (5–300 m) of the western North Pacific. Absorption coefficients at 320 nm in the subarctic region were higher than those in the subtropical region throughout surface waters, suggesting that magnitudes of photobleaching were different between the two regions. The values of S275–295 and SR were also higher in the subtropical region than the subarctic region. The dark microbial incubation showed biodegradation of DOM little affected S275–295, but slightly decreased SR. On the other hand, increases in S275–295 and relative stableness of SR were observed during photo-irradiation incubations respectively. These experimental results indicated that photobleaching of CDOM mainly induced qualitative differences in CDOM at UV region between the subarctic and subtropical surface waters. The results of this study imply that S275–295 can be used as a tracer of photochemical history of CDOM in the open ocean.


2018 ◽  
Vol 9 ◽  
Author(s):  
Pia H. Moisander ◽  
Katyanne M. Shoemaker ◽  
Meaghan C. Daley ◽  
Elizabeth McCliment ◽  
Jennifer Larkum ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document