bacterial concentrations
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 27)

H-INDEX

26
(FIVE YEARS 2)

Plant Methods ◽  
2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Cuihong Xu ◽  
Lingkun Zhong ◽  
Zeming Huang ◽  
Chenying Li ◽  
Jiazhang Lian ◽  
...  

Abstract Background Ralstonia solanacearum, one of the most devastating bacterial plant pathogens, is the causal agent of bacterial wilt. Recently, several studies on resistance to bacterial wilt have been conducted using the Arabidopsis-R. solanacearum system. However, the progress of R. solanacearum infection in Arabidopsis is still unclear. Results We generated a bioluminescent R. solanacearum by expressing plasmid-based luxCDABE. Expression of luxCDABE did not alter the bacterial growth and pathogenicity. The light intensity of bioluminescent R. solanacearum was linearly related to bacterial concentrations from 104 to 108 CFU·mL−1. After root inoculation with bioluminescent R. solanacearum strain, light signals in tomato and Arabidopsis were found to be transported from roots to stems via the vasculature. Quantification of light intensity from the bioluminescent strain accurately reported the difference in disease resistance between Arabidopsis wild type and resistant mutants. Conclusions Bioluminescent R. solanacearum strain spatially and quantitatively measured bacterial growth in tomato and Arabidopsis, and offered a tool for the high-throughput study of R. solanacearum-Arabidopsis interaction in the future.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12723
Author(s):  
Yun Dang ◽  
Qian Zhang ◽  
Jing Wang ◽  
Qian Wang ◽  
Meng Han ◽  
...  

Background Dental unit waterlines (DUWLs) provide water for handpieces, air/water syringes, and mouth-rinse water outlets. DUWL contamination can negatively affect the operating environment and public health. Therefore, it is important to elucidate the bacterial concentrations and microbial composition in the DUWLs from different dental specialties. Methods We collected 350 5-mL dental water samples (from high-speed handpieces, air/water syringes, and mouth-rinse water outlets) from 60 dental chair units (DCUs) at a dental hospital to determine the bacterial concentrations by culture methods. Meanwhile, to investigate the diversity and community structure of microbe in the DUWLs, 17 high-quality DNA from 60 250-mL air/water syringe water samples, which were collected from the same 60 DCUs, were analyzed using 16S rDNA high-throughput sequencing. Results The median bacterial concentration was 166 (31.5, 672.5) CFU/mL and the range was 0–3,816,000 CFU/mL. Only 42.6% of the water samples had bacterial concentrations below 100 CFU/mL. The Kruskal–Wallis H-test revealed that the water samples from three dental specialties had significantly different bacterial concentrations (H = 27.441, P < 0.01). High-throughput sequencing results showed significant differences in bacterial community structure between periodontics and the other two dental specialties. In the samples from three dental specialties, 508 OTUs were detected, with 160, 182 and 176 OTUs unique to the periodontics, endodontics and prosthodontics specialties, respectively. Linear discriminant analysis (LDA) effect size (LEfSe) suggested that Hydrocarboniphaga, Zoogloea, Aquabacterium, and Hydrogenophaga were enriched in the periodontics specialty; Acinetobacter, Geothrix, and Desulfovibrio were enriched in the prosthodontics specialty; and Alistipes, Clostridium XIVa, and Serratia were enriched in the endodontics specialty. Seven potentially human-pathogenic genera (Pseudomonas, Acinetobacter, Sphingomonas, Ochrobactrum, Rhizobium, Brevundimonas, and Methylobacterium) with relative abundance exceeding 1% were also detected in the DUWLs. Conclusions The bacterial concentrations and microbial composition were influenced by different dental specialties, so a validated disinfection protocol should be used to control DUWL contamination in different dental specialties.


2021 ◽  
Vol 119 (1) ◽  
pp. e2108671119
Author(s):  
Darka Labavić ◽  
Claude Loverdo ◽  
Anne-Florence Bitbol

The gut microbiota features important genetic diversity, and the specific spatial features of the gut may shape evolution within this environment. We investigate the fixation probability of neutral bacterial mutants within a minimal model of the gut that includes hydrodynamic flow and resulting gradients of food and bacterial concentrations. We find that this fixation probability is substantially increased, compared with an equivalent well-mixed system, in the regime where the profiles of food and bacterial concentration are strongly spatially dependent. Fixation probability then becomes independent of total population size. We show that our results can be rationalized by introducing an active population, which consists of those bacteria that are actively consuming food and dividing. The active population size yields an effective population size for neutral mutant fixation probability in the gut.


2021 ◽  
Vol 25 (2) ◽  
pp. 201-210
Author(s):  
Hassiba Difallah ◽  
Mohammed Ziane ◽  
Olfa Ben Braïek ◽  
Mohammed Bouamra ◽  
Habiba Louzim

Abstract This work aimed to enumerate the Bacillus cereus sensu lato from infant’s flour sampled at Béchar city and evaluate its resistance to different heating conditions during meal preparation patterns at home. Our findings revealed a prevalence of 74% with 2.4 to 3.9 CFU/g in the analyzed samples. Regarding the heat resistance at 90 °C to 98 °C, our results showed heat resistance variability which depends on the isolate, for example, D90 °C and zT °C values varied from 3.24 to 5.52 min and 11.56 to 89.74 °C respectively. Then, the decimal reduction (n) was calculated at all preparation temperatures (50, 60, 70, 80, 90 and 100 °C). Low “n” was observed with the preparation at T≤50 °C as recommended by the fabricant. However, at the other temperatures, high “n” was observed at 100°C with median and 95th values of 2.22 and 12.36 respectively. Therefore, bacterial concentrations (99th) were estimated at 0.124 log CFU/g for 100 °C. These concentrations could be increased with bacterial growth during meal storage and then achieve critical concentrations. Thus, the results of this work highlight the interest to establish a risk assessment for babies and to improve the production, preparation, and storage conditions of the infant’s flour.


Indoor Air ◽  
2021 ◽  
Author(s):  
Zili Yang ◽  
Lu‐An Chen ◽  
Chuanjun Yang ◽  
Yuqian Gu ◽  
Rong Cao ◽  
...  

Author(s):  
Felica R. Davis ◽  
Hanan H. Ali ◽  
Jason A. Rosenzweig ◽  
Daniel Vrinceanu ◽  
Balaji Bhaskar Maruthi Sridhar

Indoor dust can be a major source of heavy metals, nutrients, and bacterial contamination in residential environments and may cause serious health problems. The goal of this research is to characterize chemical and bacterial contaminants of indoor, settled house dust in the Houston Metropolitan region. To achieve this, a total of 31 indoor dust samples were collected, along with household survey data, which were subsequently analyzed for elemental and bacterial concentrations. Microscopic and geospatial analysis was conducted to characterize and map potential hotspots of contamination. Interestingly Cd, Cr, Cu, Pb, and Zn concentrations of all 31 indoor dust samples were significantly enriched and exceeded soil background concentrations. Furthermore, As, Cd, Pb, and Zn concentrations in the dust samples were significantly correlated to the enteric bacterial load concentrations. Human health assessment revealed that cancer risk values via ingestion for Cd, Cr, and Ni were greater than the acceptable range. Of our 31 dust sample isolates, three Gram-negative and 16 Gram-positive pathogenic bacteria were identified, capable of causing a wide range of diseases. Our results demonstrate that both chemical and bacterial characterization of indoor dust coupled with spatial mapping is essential to assess and monitor human and ecological health risks.


2021 ◽  
Vol 890 (1) ◽  
pp. 012035
Author(s):  
K Mahardika ◽  
I Mastuti ◽  
D Syahidah ◽  
S Ismi ◽  
Zafran

Abstract A regular surveillance of marine fish diseases was conducted from March to November 2019 in order to determine the occurrence time of the diseases within the mariculture centre of the North of Bali, Indonesia. The monthly surveillance was conducted by collecting 15 fish samples from each of the three hatcheries in Gerokgak and Penyabangan villages and of the two floating net cages in Pegametan Bay, Sumberkima village. Bacterial concentrations were grouped into 4 categories including low, moderate, high and very high. Surveillance data were analyzed using bivariate descriptive statistical methods. The results showed some important findings. First, the results of the study showed that NNV infection was found during the transitional seasons in March to June and September to November. Parasite infection were more frequent observed in fish with high and very high bacterial population. Second, high concentration of total bacteria in fish-feces occurred throughout the year. The prevalence of NNV infection and bacterial populations at the high to very high concentration were mostly occurred in the cultured fish in hatcheries at the size of 1-10 g, while in cultured fish at the net cages were mostly occurred at the size of > 50 g.


Author(s):  
Jacek Grzyb ◽  
Krzysztof Pawlak

AbstractZoos are places open for a large number of visitors, adults and children, who can admire exotic as well as indigenous animal species. The premises for animals may contain pathogenic microbes, including those exhibiting antibiotic resistance. It poses a threat to people remaining within the zoo premises, both for animal keepers who meet animals on a daily basis and visitors who infrequently have contact with animals. There are almost no studies concerning the presence on the concentration of airborne bacteria, especially staphylococci and fecal bacteria in animal shelters in the zoo. There is no data about antibiotic resistance of staphylococci in these places. The results will enable to determine the scale of the threat that indicator bacteria from the bioaerosol pose to human health within zoo premises. This study conducted in rooms for 5 animals group (giraffes, camels, elephants, kangaroos, and Colobinae (species of monkey)) in the Silesian Zoological Garden in Chorzów (Poland). The bioaerosol samples were collected using a six-stage Andersen cascade impactor to assess the concentrations and size distribution of airborne bacteria. Staphylococci were isolated from bioaerosol and tested for antibiotic resistance. In our study, the highest contamination of staphylococci and fecal bacteria was recorded in rooms for camels and elephants, and the lowest in rooms for Colobinae. At least 2/3 of bacteria in bioaerosol constituted respirable fraction that migrates into the lower respiratory tract of the people. In investigated animal rooms, the greatest bacteria contribution was recorded for bioaerosol fraction sized 1.1–3.3μm. Bacterial concentrations were particularly strong in spring and autumn, what is related to shedding fur by animals. Among the isolated staphylococci which most often occurred were Staphylococcus succinus, S. sciuri, and S. vitulinus. The highest antibiotic resistance was noted in the case of Staphylococcus epidermidis, while the lowest for S. xylosus. In addition to standard cleaning of animal rooms, periodic disinfection should be considered. Cleaning should be carried out wet, which should reduce dust, and thus the concentrations of bacteria in the air of animal enclosures.


2021 ◽  
Author(s):  
Darka Labavic ◽  
Claude Loverdo ◽  
Anne-Florence Bitbol

The gut microbiota features important genetic diversity, and the specific spatial features of the gut may shape evolution within this environment. We investigate the fixation probability of neutral bacterial mutants within a minimal model of the gut that includes hydrodynamic flow and resulting gradients of food and bacterial concentrations. We find that this fixation probability is substantially increased compared to an equivalent well-mixed system, in the regime where the profiles of food and bacterial concentration are strongly spatially-dependent. Fixation probability then becomes independent of total population size. We show that our results can be rationalized by introducing an active population, which consists of those bacteria that are actively consuming food and dividing. The active population size yields an effective population size for neutral mutant fixation probability in the gut.


Sign in / Sign up

Export Citation Format

Share Document