scholarly journals Scram and nonlinear reactor system seismic analysis for a liquid metal fast reactor

1976 ◽  
Vol 38 (3) ◽  
pp. 555-566 ◽  
Author(s):  
A. Morrone ◽  
A.N. Nahavandi ◽  
W.G. Brussalis

In this paper, the advancement of the integral fast reactor (IFR) is studied. We proposed the safety passive inherent approach which keeps the IFR operations safe from the maintenance cost. Additionally, it is observed that when failure appears in the reactor then safety passive inherent works efficiently and it turns off the reactor to preserve the safety. Therefore, it is necessary to use the inherent properties of the metallic fuel such as liquid metal, and it should be cooled in a way to substantial developments in the total appearances of the reactor system. Moreover, the key advantages of the IFR concept are narrated briefly with its mechanic position and the future development and research directions.


2015 ◽  
Vol 03 (03) ◽  
pp. 125-128 ◽  
Author(s):  
Tae Kyu Kim ◽  
Sanghoon Noh ◽  
Suk Hoon Kang ◽  
Hyun Ju Jin ◽  
Ga Eon Kim

2016 ◽  
Vol 298 ◽  
pp. 218-228 ◽  
Author(s):  
E. Merzari ◽  
P. Fischer ◽  
H. Yuan ◽  
K. Van Tichelen ◽  
S. Keijers ◽  
...  

2021 ◽  
Vol 68 (2) ◽  
pp. 152-158
Author(s):  
E. V. Usov ◽  
V. I. Chukhno ◽  
I. A. Klimonov ◽  
V. D. Ozrin ◽  
N. A. Mosunova ◽  
...  

Author(s):  
Toshiharu Muramatsu

Fluid-structure thermal interaction phenomena characterized by stationary random temperature fluctuations, namely thermal striping are observed in the downstream region of a T-junction piping system of liquid metal fast reactor (LMFR). Therefore the piping walls located in the downstream region must be protected against the stationary random thermal process which might induced high-cycle fatigue. This paper describes the evaluation system based on numerical simulation methods for the thermal striping, and numerical results of the thermal striping at a T-junction piping system under the various parameters, i.e., velocity ratio and diameter ratio between both the pipes and Reynolds number. Then detailed turbulence mixing process at the T-junction piping region due to arched vortexes generating lower frequency fluctuations are evaluated through a separate numerical analysis of a fundamental water experiment.


Author(s):  
Jian Song ◽  
Limin Liu ◽  
Simiao Tang ◽  
Yingwei Wu ◽  
Wenxi Tian ◽  
...  

Due to great deal of operation experience and technology accumulation, sodium cooled fast reactor (SFR) is the most promising among the six Generation IV reactors, which has advantages of breeding nuclear fuel, transmuting long-lived actinides and good safety characteristics. Thermal-hydraulic computer codes will have to be developed, verified, and validated to support the conceptual and final designs of new SFRs. However, work on developing thermal hydraulic analysis code for SFR is very limited in China, while the common software RELAP5 MOD3 is unable to analyze liquid metal systems. So the modified RELAP5 MOD3.2 is being considered as the thermal-hydraulic system code to support the development of the SFRs. The thermodynamic and transport properties of sodium liquid and vapor have been implemented into the RELAP5 MOD3.2 code, as well as the specific heat transfer correlations for liquid metal. The sodium liquid properties use polynomial equations based on data obtained from Argonne National Laboratory, and the vapor is assumed to be perfect gas. The property equations are acceptably accurate for analysis of SFR, especially for single-phase liquid. New files are added to the fluids directory to generate property tables for new working fluid, which are similar to the table interpolation subroutines for light and heavy water in the original file directory. The method of code modifications are universal for other working fluids and will not affect the code original performance. Some basic verification work for the modified code are carried out. The steam generator of CEFR is analyzed to verify the modified code. The calculated results show that all the water will boil off in the evaporator and the calculated results are in good agreement with the design values. By using modified RELAP5 to model the primary loop of EBR-II fast reactor, the SHRT-17 PLOF test was analyzed. The results show that the natural circulation can be established in the EBR-II primary system after main pumps off to remove the core decay residual heat effectively, and the peak temperature under the safety limits. Moreover, the results computed in this work compared well with the test experimental data for the steady state condition. During the transients, the changing trends of temperature and pressure are similar to experimental data. The discrepancies between calculation and experiment are considered acceptably which need to be improved in the future work. Our work could demonstrate the capability and reliability of the modified RELAP5 for the analysis of SFRs further.


Sign in / Sign up

Export Citation Format

Share Document