Dependence of μ-meson and electron polarization on correlation parameters in Kμ3 and Ke3 decays

1958 ◽  
Vol 6 ◽  
pp. 1-9 ◽  
Author(s):  
J. Werle
1983 ◽  
Vol 48 (3) ◽  
pp. 842-853
Author(s):  
Kurt Winkler ◽  
František Kaštánek ◽  
Jan Kratochvíl

Specific gas-liquid interfacial area in flow tubes 70 mm in diameter of the length 725 and 1 450 mm resp. containing various swirl bodies were measured for concurrent upward flow in the ranges of average gas (air) velocities 11 to 35 ms-1 and liquid flow rates 13 to 80 m3 m-2 h-1 using the method of CO2 absorption into NaOH solutions. Two different flow regimes were observed: slug flow swirled annular-mist flow. In the latter case the determination was carried out separately for the film and spray flow components, respectively. The obtained specific areas range between 500 to 20 000 m3 m-2. Correlation parameters are energy dissipation criteria, related to the geometrical reactor volume and to the static liquid volume in the reactor.


2021 ◽  
Vol 5 (1) ◽  
pp. 59
Author(s):  
Gaël Kermarrec ◽  
Niklas Schild ◽  
Jan Hartmann

Terrestrial laser scanners (TLS) capture a large number of 3D points rapidly, with high precision and spatial resolution. These scanners are used for applications as diverse as modeling architectural or engineering structures, but also high-resolution mapping of terrain. The noise of the observations cannot be assumed to be strictly corresponding to white noise: besides being heteroscedastic, correlations between observations are likely to appear due to the high scanning rate. Unfortunately, if the variance can sometimes be modeled based on physical or empirical considerations, the latter are more often neglected. Trustworthy knowledge is, however, mandatory to avoid the overestimation of the precision of the point cloud and, potentially, the non-detection of deformation between scans recorded at different epochs using statistical testing strategies. The TLS point clouds can be approximated with parametric surfaces, such as planes, using the Gauss–Helmert model, or the newly introduced T-splines surfaces. In both cases, the goal is to minimize the squared distance between the observations and the approximated surfaces in order to estimate parameters, such as normal vector or control points. In this contribution, we will show how the residuals of the surface approximation can be used to derive the correlation structure of the noise of the observations. We will estimate the correlation parameters using the Whittle maximum likelihood and use comparable simulations and real data to validate our methodology. Using the least-squares adjustment as a “filter of the geometry” paves the way for the determination of a correlation model for many sensors recording 3D point clouds.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 728
Author(s):  
Zhaofeng Su

Quantum entanglement is not only a fundamental concept in quantum mechanics but also a special resource for many important quantum information processing tasks. An intuitive way to understand quantum entanglement is to analyze its geometric parameters which include local parameters and correlation parameters. The correlation parameters have been extensively studied while the role of local parameters have not been drawn attention. In this paper, we investigate the question how local parameters of a two-qubit system affect quantum entanglement in both quantitative and qualitative perspective. Firstly, we find that the concurrence, a measure of quantum entanglement, of a general two-qubit state is bounded by the norms of local vectors and correlations matrix. Then, we derive a sufficient condition for a two-qubit being separable in perspective of local parameters. Finally, we find that different local parameters could make a state with fixed correlation matrix separable, entangled or even more qualitatively entangled than the one with vanished local parameters.


Author(s):  
Emanuele Roccia ◽  
Marco G. Genoni ◽  
Luca Mancino ◽  
Ilaria Gianani ◽  
Marco Barbieri ◽  
...  

AbstractThe physics that governs quantum monitoring may involve other degrees of freedom than the ones initialised and controlled for probing. In this context we address the simultaneous estimation of phase and dephasing characterizing a dispersive medium, and we explore the role of frequency correlations within a photon pair generated via parametric down-conversion, when used as a probe for the medium. We derive the ultimate quantum limits on the estimation of the two parameters, by calculating the corresponding quantum Cramér-Rao bound; we then consider a feasible estimation scheme, based on the measurement of Stokes operators, and address its absolute performances in terms of the correlation parameters, and, more fundamentally, of the role played by correlations in the simultaneous achievability of the quantum Cramér- Rao bounds for each of the two parameters.


Sign in / Sign up

Export Citation Format

Share Document