scholarly journals The enhancement of single particle transition rates in C13

1964 ◽  
Vol 52 ◽  
pp. 381-384 ◽  
Author(s):  
M.A. Nagarajan
1967 ◽  
Vol 45 (1) ◽  
pp. 101-106 ◽  
Author(s):  
Y. S. Horowitz ◽  
R. B. Moore ◽  
R. Barton

The half-lives of the 243-keV and 188-keV levels in 125I were measured, yielding T1/2 = 2.1 ± 0.2 × 10−10 seconds for the 243-key level and T1/2 = 3.4 ± 0.2 × 10−10 seconds for the 188-keV level. Partial half-lives were calculated, indicating that the E2 transition rates are enhanced over single-particle estimates by a factor of 30 and hence are collective in nature.


2016 ◽  
Vol 25 (10) ◽  
pp. 1650076 ◽  
Author(s):  
J. B. Gupta

Beyond the shape phase transition from the spherical vibrator to the deformed rotor regime at [Formula: see text], the interplay of [Formula: see text]- and [Formula: see text]-degrees of freedom becomes important, which affects the relative positions of the [Formula: see text]- and [Formula: see text]-bands. In the microscopic approach of the dynamic pairing plus quadrupole model, a correlation of the strength of the quadrupole force and the formation of the [Formula: see text]- and [Formula: see text]-bands in [Formula: see text]Dy is described. The role of the potential energy surface is illustrated. The [Formula: see text] transition rates in the lower three [Formula: see text]-bands and the multi-phonon bands with [Formula: see text] and [Formula: see text] are well reproduced. The absolute [Formula: see text] [Formula: see text] serves as a good measure of the quadrupole strength. The role of the single particle Nilsson orbits is also described.


2018 ◽  
Vol 194 ◽  
pp. 01005 ◽  
Author(s):  
Nikolay Minkov

We study the manifestation of collective vibrations and rotations coupled to single-particle motion in odd-mass nuclei with the presence of axial quadrupole-octupole deformations. Our model incorporates K-mixing effects stemming from the Coriolis interaction between the odd nucleon and the even-even core and thus takes into account the probabilities for otherwise forbidden due to the axial symmetry electromagnetic transitions between excited states built on different intrinsic configurations. We demonstrate these effects in the quasi-parity-doublet spectrum of the nucleus 221Fr in which a strong Coriolis interaction manifests. The model successfully describes the available intra- and interband E1, E2 and M1 transition rates giving an insight into the mechanism which allows the K-suppressed transitions in axially symmetric nuclei.


2020 ◽  
Author(s):  
Jochem N.A. Vink ◽  
Stan J.J. Brouns ◽  
Johannes Hohlbein

AbstractSingle-particle tracking is an important technique in the life sciences to understand the kinetics of biomolecules. Observed diffusion coefficients in vivo, for example, enable researchers to determine whether biomolecules are moving alone, as part of a larger complex or are bound to large cellular components such as the membrane or chromosomal DNA. A remaining challenge has been to retrieve quantitative kinetic models especially for molecules that rapidly interchange between different diffusional states. Here, we present analytic diffusion distribution analysis (anaDDA), a framework that allows extracting transition rates from distributions of observed diffusion coefficients. We show that theoretically predicted distributions accurately match simulated distributions and that anaDDA outperforms existing methods to retrieve kinetics especially in the fast regime of 0.1-10 transitions per imaging frame. AnaDDA does account for the effects of confinement and tracking window boundaries. Furthermore, we added the option to perform global fitting of data acquired at different frame times, to allow complex models with multiple states to be fitted confidently. Previously, we have started to develop anaDDA to investigate the target search of CRISPR-Cas complexes. In this work, we have optimized the algorithms and reanalysed experimental data of DNA polymerase I diffusing in live E. coli. We found that long-lived DNA interaction by DNA polymerase are more abundant upon DNA damage, suggesting roles in DNA repair. We further revealed and quantified fast DNA probing interactions that last shorter than 10 ms. AnaDDA pushes the boundaries of the timescale of interactions that can be probed with single-particle tracking and is a mathematically rigorous framework that can be further expanded to extract detailed information about the behaviour of biomolecules in living cells.


Author(s):  
J. Frank ◽  
P.-Y. Sizaret ◽  
A. Verschoor ◽  
J. Lamy

The accuracy with which the attachment site of immunolabels bound to macromolecules may be localized in electron microscopic images can be considerably improved by using single particle averaging. The example studied in this work showed that the accuracy may be better than the resolution limit imposed by negative staining (∽2nm).The structure used for this demonstration was a halfmolecule of Limulus polyphemus (LP) hemocyanin, consisting of 24 subunits grouped into four hexamers. The top view of this structure was previously studied by image averaging and correspondence analysis. It was found to vary according to the flip or flop position of the molecule, and to the stain imbalance between diagonally opposed hexamers (“rocking effect”). These findings have recently been incorporated into a model of the full 8 × 6 molecule.LP hemocyanin contains eight different polypeptides, and antibodies specific for one, LP II, were used. Uranyl acetate was used as stain. A total of 58 molecule images (29 unlabelled, 29 labelled with antl-LPII Fab) showing the top view were digitized in the microdensitometer with a sampling distance of 50μ corresponding to 6.25nm.


Author(s):  
Adriana Verschoor ◽  
Ronald Milligan ◽  
Suman Srivastava ◽  
Joachim Frank

We have studied the eukaryotic ribosome from two vertebrate species (rabbit reticulocyte and chick embryo ribosomes) in several different electron microscopic preparations (Fig. 1a-d), and we have applied image processing methods to two of the types of images. Reticulocyte ribosomes were examined in both negative stain (0.5% uranyl acetate, in a double-carbon preparation) and frozen hydrated preparation as single-particle specimens. In addition, chick embryo ribosomes in tetrameric and crystalline assemblies in frozen hydrated preparation have been examined. 2D averaging, multivariate statistical analysis, and classification methods have been applied to the negatively stained single-particle micrographs and the frozen hydrated tetramer micrographs to obtain statistically well defined projection images of the ribosome (Fig. 2a,c). 3D reconstruction methods, the random conical reconstruction scheme and weighted back projection, were applied to the negative-stain data, and several closely related reconstructions were obtained. The principal 3D reconstruction (Fig. 2b), which has a resolution of 3.7 nm according to the differential phase residual criterion, can be compared to the images of individual ribosomes in a 2D tetramer average (Fig. 2c) at a similar resolution, and a good agreement of the general morphology and of many of the characteristic features is seen.Both data sets show the ribosome in roughly the same ’view’ or orientation, with respect to the adsorptive surface in the electron microscopic preparation, as judged by the agreement in both the projected form and the distribution of characteristic density features. The negative-stain reconstruction reveals details of the ribosome morphology; the 2D frozen-hydrated average provides projection information on the native mass-density distribution within the structure. The 40S subunit appears to have an elongate core of higher density, while the 60S subunit shows a more complex pattern of dense features, comprising a rather globular core, locally extending close to the particle surface.


1998 ◽  
Vol 08 (PR6) ◽  
pp. Pr6-109-Pr6-113
Author(s):  
P. Gallo ◽  
F. Sciortino ◽  
P. Tartaglia ◽  
S.-H. Chen

Sign in / Sign up

Export Citation Format

Share Document