Highly active polymerization catalysts of long life derived from σ- and π-bonded transition metal alkyl compounds

Polymer ◽  
1974 ◽  
Vol 15 (3) ◽  
pp. 169-174 ◽  
Author(s):  
D.G.H. Ballard ◽  
E. Jones ◽  
R.J. Wyatt ◽  
R.T. Murray ◽  
P.A. Robinson
2008 ◽  
Vol 73 (8-9) ◽  
pp. 945-955 ◽  
Author(s):  
Luděk Kaluža ◽  
Miroslav Zdražil

The transition metals V, Cr, Mn, Fe, Co, Ni, Mo, Ru, Rh, Pd, W, Re, Os, Ir and Pt were deposited from aqueous solutions of their salts onto conventional γ-Al2O3 and unconventional TiO2 and ZrO2 supports by vacuum impregnation and characterized in their sulfided form by a model reaction of benzothiophene hydrodesulfurization. It was found that the TiO2 and ZrO2 supports influenced predominantly positively the resulting activity of relatively low-active metals (V, Cr, Mn, Fe, Co, Ni, Mo, Ru, W and Os), whereas the highly active metals (Rh, Pd, Ir, Pt and Re) were influenced slightly negatively or not at all by those supports compared with the γ-Al2O3-supported system. A significant effect of the supports on the hydrodesulfurization-activity ranking of the transition-metal sulfides studied was ascertained.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 452
Author(s):  
Michalis Konsolakis ◽  
Maria Lykaki

The rational design and fabrication of highly-active and cost-efficient catalytic materials constitutes the main research pillar in catalysis field. In this context, the fine-tuning of size and shape at the nanometer scale can exert an intense impact not only on the inherent reactivity of catalyst’s counterparts but also on their interfacial interactions; it can also opening up new horizons for the development of highly active and robust materials. The present critical review, focusing mainly on our recent advances on the topic, aims to highlight the pivotal role of shape engineering in catalysis, exemplified by noble metal-free, CeO2-based transition metal catalysts (TMs/CeO2). The underlying mechanism of facet-dependent reactivity is initially discussed. The main implications of ceria nanoparticles’ shape engineering (rods, cubes, and polyhedra) in catalysis are next discussed, on the ground of some of the most pertinent heterogeneous reactions, such as CO2 hydrogenation, CO oxidation, and N2O decomposition. It is clearly revealed that shape functionalization can remarkably affect the intrinsic features and in turn the reactivity of ceria nanoparticles. More importantly, by combining ceria nanoparticles (CeO2 NPs) of specific architecture with various transition metals (e.g., Cu, Fe, Co, and Ni) remarkably active multifunctional composites can be obtained due mainly to the synergistic metalceria interactions. From the practical point of view, novel catalyst formulations with similar or even superior reactivity to that of noble metals can be obtained by co-adjusting the shape and composition of mixed oxides, such as Cu/ceria nanorods for CO oxidation and Ni/ceria nanorods for CO2 hydrogenation. The conclusions derived could provide the design principles of earth-abundant metal oxide catalysts for various real-life environmental and energy applications.


2016 ◽  
Vol 6 (3) ◽  
pp. 882-889 ◽  
Author(s):  
Kai C. Szeto ◽  
Wissam Sahyoun ◽  
Nicolas Merle ◽  
Jessica Llop Castelbou ◽  
Nicolas Popoff ◽  
...  

Supported Lewis acid/base systems based have been prepared and characterized.


Author(s):  
Santhosh Kumar Ramasamy ◽  
Ramakrishnan S ◽  
Sampath Prabhakaran ◽  
Ae Kim ◽  
Ranjith Kumar Dharman ◽  
...  

Development of highly active and durable non-precious spinel transition metal sulfide (STMS)-based electrocatalysts plays a vital role in increasing the efficiency of hydrogen production via water electrolysis. Herein, we have...


Nano Energy ◽  
2016 ◽  
Vol 28 ◽  
pp. 366-372 ◽  
Author(s):  
Anand P. Tiwari ◽  
Doyoung Kim ◽  
Yongshin Kim ◽  
Om Prakash ◽  
Hyoyoung Lee

2020 ◽  
Vol 24 ◽  
pp. 707-713 ◽  
Author(s):  
Yi Xing ◽  
Nan Chen ◽  
Mingchuan Luo ◽  
Yingjun Sun ◽  
Yong Yang ◽  
...  

Nanoscale ◽  
2020 ◽  
Vol 12 (40) ◽  
pp. 20719-20725
Author(s):  
Kai Rong ◽  
Jiale Wei ◽  
Liang Huang ◽  
Youxing Fang ◽  
Shaojun Dong

A direct DES calcining method is developed to prepare low-dimensional and highly active transition metal oxides (TMOs) for electrochemical oxygen evolution reaction.


2020 ◽  
Vol 7 (15) ◽  
pp. 2088-2106 ◽  
Author(s):  
Mingyuan Li ◽  
Ruibin Wang ◽  
Moris S. Eisen ◽  
Sehoon Park

This review outlines photoswitchable, transition metal-based olefin coordination polymerization catalysts ranging from homogeneous to heterogeneous, and monometallic to bimetallic regimes.


Sign in / Sign up

Export Citation Format

Share Document