Static screening length behaviour in polystyrene solutions

Polymer ◽  
1986 ◽  
Vol 27 (10) ◽  
pp. 1595-1600 ◽  
Author(s):  
Jeffrey T Koberstein ◽  
Claude Picot
Author(s):  
Fox T. R. ◽  
R. Levi-Setti

At an earlier meeting [1], we discussed information retrieval in the scanning transmission ion microscope (STIM) compared with the electron microscope at the same energy. We treated elastic scattering contrast, using total elastic cross sections; relative damage was estimated from energy loss data. This treatment is valid for “thin” specimens, where the incident particles suffer only single scattering. Since proton cross sections exceed electron cross sections, a given specimen (e.g., 1 μg/cm2 of carbon at 25 keV) may be thin for electrons but “thick” for protons. Therefore, we now extend our previous analysis to include multiple scattering. Our proton results are based on the calculations of Sigmund and Winterbon [2], for 25 keV protons on carbon, using a Thomas-Fermi screened potential with a screening length of 0.0226 nm. The electron results are from Crewe and Groves [3] at 30 keV.


Author(s):  
Klaus Morawetz

The linearised nonlocal kinetic equation is solved analytically for impurity scattering. The resulting response function provides the conductivity, plasma oscillation and Fermi momentum. It is found that virial corrections nearly compensate the wave-function renormalizations rendering the conductivity and plasma mode unchanged. Due to the appearance of the correlated density, the Luttinger theorem does not hold and the screening length is influenced. Explicit results are given for a typical semiconductor. Elastic scattering of electrons by impurities is the simplest but still very interesting dissipative mechanism in semiconductors. Its simplicity follows from the absence of the impurity dynamics, so that individual collisions are described by the motion of an electron in a fixed potential.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Satyabrata Sahoo ◽  
Y. K. Ho

The plasma screening effect is found to uncover a Cooper minimum in the photoionization cross sections from the ground state of the Li atom embedded in Debye plasma environment. The variation of the location of this minimum with Debye screening length is discussed and analyzed in terms of the instability of the ground state.


1972 ◽  
Vol 5 (8) ◽  
pp. 2863-2872 ◽  
Author(s):  
Joseph Rudnick

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Chi Yu ◽  
Xinwen Wang ◽  
Kunfeng Pang ◽  
Guofeng Zhao ◽  
Wenpeng Sun

Deep dry screening is the key unit in mineral processing. A vibrating flip-flow screen (VFFS) can provide effective solutions for screening fine-grained minerals, and it has been extensively used in many industrial fields. An accurate dynamic model of VFFS considering the influence of materials is significant for its dynamic analysis and screening process research, but it has rarely been studied in detail. In this paper, an improved dynamic model of VFFS is proposed and its dynamic equations are solved to find the reasonable operating condition, and experiments are carried out to verify the reasonability of the proposed model under no-load and loading materials conditions. Furthermore, the method of multistage sampling and multilayer screening is also applied to evaluate the screening performance of iron ore at 3 mm cut size on VFFS. Results show that when the mass of materials, relative amplitude, and operating frequency have values of 107 kg, about 6 mm and 80.79 rad/s, respectively, the screening efficiency gradually increases with an increase of screening length, reaching 89.05%; however, it does not change much when the screening length exceeds 1900.8 mm. Additionally, the misplaced materials of coarse particles will continue to increase as the screening length increases. This provides theoretical and technical support for the optimization of the length of the VFFS.


2019 ◽  
Vol 100 (4) ◽  
Author(s):  
Ram M. Adar ◽  
Samuel A. Safran ◽  
Haim Diamant ◽  
David Andelman

Sign in / Sign up

Export Citation Format

Share Document