Thermal stability of methyl methacrylate copolymers with some dimethacrylates

1981 ◽  
Vol 23 (11) ◽  
pp. 2650-2655
Author(s):  
T.G. Chmykhova ◽  
N.I. Nikiforova ◽  
Ye.F. Samarin ◽  
B.P. Shtarkman ◽  
E.G. Pomerantseva ◽  
...  
2012 ◽  
Vol 476-478 ◽  
pp. 730-733
Author(s):  
Zhi Dan Lin ◽  
Zi Xian Guan ◽  
Neng Sheng Liu ◽  
Zheng Jun Li

The composites of polypropylene (PP) and wasted PET fabric (WF) were prepared by extrusion blending and injection molding, and then, the interface of the composites was modified by two different types of compatibilizers, i.e., maleic anhydride grafted PP (PP-g-MA) and the mixture of methyl methacrylate (MMA) and styrene (St). The mechanical properties, morphology and thermal stability of these composites were studied.


2007 ◽  
Vol 92 (1) ◽  
pp. 70-74 ◽  
Author(s):  
Milena Marinović-Cincović ◽  
Maja Č. Popović ◽  
Mirjana M. Novaković ◽  
Jovan M. Nedeljković

2019 ◽  
Vol 140 (1) ◽  
pp. 189-198 ◽  
Author(s):  
Marta Worzakowska

Abstract The thermal properties together with the identification of the emitted volatiles during heating of the starch-graft-poly(geranyl methacrylate) copolymers with the use of a TG/FTIR-coupled method and some of the physicochemical properties of the copolymers were determined. It was found that the use of the geranyl methacrylate monomer to the graft copolymerization with potato starch allowed to replace ca. 1.46 hydroxyl groups per glycosidic units of starch macromolecule by the poly(geranyl methacrylate) chains under the optimal reaction conditions. Generally, all tested starch graft copolymers exhibited a significant increase in polar solvent resistance, moisture resistance and chemical stability as compared to potato starch. However, the thermal stability of the obtained materials was substantially lower as compared to the thermal stability of potato starch. The beginning of the decomposition of the copolymers was observed below 150 °C. It was due to low thermal stability of the poly(geranyl methacrylate) chains. The decomposition of the prepared materials runs at least four, unseparated stages. The first stage was visible up to 220–240 °C. It was connected with the emission of some aldehyde, acid, alcohol, alkene, ester fragments, H2O and CO2 as a result of the depolymerization, destruction and partial decarboxylation of the poly(geranyl methacrylate) chains. The second stage was spread between ca. 220–240 and 358–375 °C. The emission of organic, saturated, unsaturated, aromatic, oxygen-rich fragments, CO, CO2 and H2O as a result of the decomposition and dehydration of starch was confirmed. Heating of the studied materials between 358–375 and 455–477 °C resulted in subsequent decomposition processes of the residues and the creation of some oxygen-rich saturated and unsaturated fragments, CO, CO2, H2O and CH4. Finally, above 455–477 °C, a minor mass loss as a result of the decomposition processes of the residues formed before was observed. The emission of CO, CO2, H2O, CH4 and some oxygen-rich saturated and unsaturated fragments was confirmed.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 599 ◽  
Author(s):  
Chun-Na Yan ◽  
Qian Liu ◽  
Lin Xu ◽  
Li-Ping Bai ◽  
Li-Ping Wang ◽  
...  

Well-defined amphiphilic diblock copolymer poly (methyl methacrylate)-b-poly (N-isopropylacrylamide) grafted hollow spheres (HS-g-PMMA-b-PNIPAM) hybrid materials were synthesized via metal-free surface-initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiators α-Bromoisobutyryl bromide (BIBB) were attached onto hollow sphere surfaces through esterification of acyl bromide groups and hydroxyl groups. The synthetic ATRP initiators (HS-Br) were further used for the metal-free SI-ATRP of methyl methacrylate (MMA) and N-isopropyl acrylamide (NIPAM) using 10-phenylphenothiazine (PTH) as the photocatalyst. The molecular weight of the polymers, structure, morphology, and thermal stability of the hybrid materials were characterized via gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS), 1H-nuclear magnetic resonance spectroscopy (1H NMR), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA), respectively. The results indicated that the ATRP initiator had been immobilized onto HS surfaces successfully followed by metal-free SI-ATRP of MMA and NIPAM, the Br atom had located at the end of the main PMMA polymer chain, and the polymerization process possessed the characteristic of controlled/“living” polymerization. The thermal stability of the hybrid materials was increased significantly compared to the pure PMMA and PNIPAM.


Sign in / Sign up

Export Citation Format

Share Document