Paleoclimatic Record of a Long Deep Sea Core from the Eastern Mediterranean

1977 ◽  
Vol 8 (2) ◽  
pp. 205-235 ◽  
Author(s):  
Maria Bianca Cita ◽  
Colette Vergnaud-Grazzini ◽  
Christian Robert ◽  
Hervé Chamley ◽  
Neri Ciaranfi ◽  
...  

A deep-sea core over 16 m long from the crestal area of the Mediterranean Ridge has been investigated with different techniques, including quantitative micropaleontology, stable isotopes (measured on the epipelagic species Globigerinoides ruber and on the mesopelagic species Globorotalia inflata), and clay mineralogy. The resulting record of climatic fluctuations can be cross correlated to other Mediterranean cores by means of isochronous lithologies (tephra layers and sapropels). The climatic record of the Mediterranean is similar in character, phase, and chronology to the records investigated in the equatorial Pacific and in the Caribbean. Isotope stages 1 to 17 have been recognized. Cyclically repeated stagnant cycles resulting in sapropel deposition complicate both the isotopic and the faunal signal. The isotopic investigations reveal that the temperature change in the surface layers of the eastern Mediterranean was no greater than 8°C in the late “glacial” Pleistocene. The chronostratigraphic and biostratigraphic interpretation of Core KS09 indicate that the mean sedimentation rate was 2.4 cm/1000 years, a value very close to the 2.5 cm/1000 years calculated for the entire Quaternary section at DSDP Site 125, also located in the crestal area of the Mediterranean Ridge in the Ionian Basin. The base of KS09 is likely to be very close to the Brunhes/Matuyama boundary dated at 0.7 my.

Extensive surveys with long range side-scan sonar, as well as an air-gun sub-bottom profiler and a narrow beam echo-sounder, are described for the eastern half of the Mediterranean Sea. The main structural trends are shown in plan view to follow the curve of the Hellenic Outer Ridge (previously known as the Mediterranean Ridge, East Mediterranean Ridge or Mediterranean Rise), and suggest a structural continuation into the Ionian Islands west of Greece. To the west a similar but smaller feature, the Calabrian Outer Ridge (external to the Calabrian Arc) is described. This is partly welded to the Hellenic Outer Ridge along a narrow suture zone. To the east the Hellenic Outer Ridge is shown to merge into the Cyprus Outer Ridge (external to the Cyprus Arc). The Hellenic Outer Ridge is clearly asymmetrical in cross section, with its steeper slope facing towards the interior of its Arc System. Folds and strike faults have been recognized on sonographs, particularly those of the Hellenic Outer Ridge. Cross-faults (possibly strike-slip) are numerous on the northern slope of this Outer Ridge. Cross-faults are especially well developed where the Ridge is narrowest and highest between Crete and North Africa, and where it may have been thickened by thrusting. In general the intensity of deformation decreases southwards across the Hellenic Outer Ridge. Slumping is probably responsible for progressively reducing the height of the relief produced by folding and faulting. The Hellenic, Calabrian and Cyprus Outer Ridges are interpreted as miogeanticlines related to the Plio-Quaternary phase of the continuing southwards outgrowth of the Hellenic, Calabrian and Cyprus Arc Systems. The large and small scale structures are of particular interest because they show the surface relief of some early evolutionary stages of dominantly compressional submarine mountain ranges before they are subject to subaerial erosion or modified by later tectonism. The driving force of the continuing orogeny is seen as resulting from local mantle diapirs spreading outwards from the Tyrrhenian, Aegean and Turkish regions, rather than from a simple closure of the Eastern Mediterranean due to the supposed convergence of the Eurasian and African ‘Plates’.


Author(s):  
Rossana Sanfilippo ◽  
Antonietta Rosso ◽  
Adriano Guido ◽  
Vasilis Gerovasileiou

This paper is a first detailed contribution to the knowledge of serpulid diversity from marine caves of the eastern Mediterranean Sea. A total of 27 taxa were recorded in two submerged caves of Lesvos Island, in the Aegean Sea. A clear trend of variability was observed with serpulid abundance, specifically that of sciaphilic and deep-sea species, increasing inwards while the number of taxa and species diversity did not change significantly across the two caves. In the innermost sectors of the studied caves two types of bioconstructions were observed: (a) ‘coiled doughnuts’ ofProtula, recorded for the first time in Mediterranean caves; and (b) ‘biostalactites’ mainly consisting of skeletal metazoans recorded for the first time from the eastern Mediterranean. The results of the present study revealed new faunal elements and type of bioconstructions for the Mediterranean marine caves, showing that several aspects of their communities are still poorly known and deserve to be further investigated.


1979 ◽  
Vol 12 (2) ◽  
pp. 241-253 ◽  
Author(s):  
Robert Thunell ◽  
Alan Federman ◽  
Stephen Sparks ◽  
Douglas Williams

The Y-5 ash is the most widespread layer in deep-sea sediments from the eastern Mediterranean. This ash layer was previously correlated with the Citara-Serrara tuff on Ischia Island and dated at approximately 25,000 yr B.P. New data on the glass chemistry of the Y-5 ash and pyroclastic deposits from the Neopolitan volcanic province suggest that the layer is correlative with the large-volume Campanian ignimbrite and not with the deposit from Ischia Island. The volume of the Y-5 ash is approximately 65 km3 which is comparable in magnitude to the volume of the Campanian ignimbrite. An interpolated age of approximately 38,000 yr B.P. is estimated based on sedimentation rates derived from δ18O stratigraphy. There is a discrepancy between this estimate and previously reported radiocarbon ages which range from 24,000 to 35,000 yr B.P. We propose that the “Campanian tuff ash layer” should be adopted as the full stratigraphic name for the Y-5 ash. The deep-sea ash layer is divisible into two units in proximal localities, probably correlating with two major phases of the eruption: plinian and ignimbrite.


Sign in / Sign up

Export Citation Format

Share Document