anoxic basins
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 7)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sinjini Sinha ◽  
A. D. Muscente ◽  
James D. Schiffbauer ◽  
Matt Williams ◽  
Günter Schweigert ◽  
...  

AbstractKonservat-Lagerstätten—deposits with exceptionally preserved fossils—vary in abundance across geographic and stratigraphic space due to paleoenvironmental heterogeneity. While oceanic anoxic events (OAEs) may have promoted preservation of marine lagerstätten, the environmental controls on their taphonomy remain unclear. Here, we provide new data on the mineralization of fossils in three Lower Jurassic Lagerstätten—Strawberry Bank (UK), Ya Ha Tinda (Canada), and Posidonia Shale (Germany) —and test the hypothesis that they were preserved under similar conditions. Biostratigraphy indicates that all three Lagerstätten were deposited during the Toarcian OAE (TOAE), and scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) show that each deposit contains a variety of taxa preserved as phosphatized skeletons and tissues. Thus, despite their geographic and paleoenvironmental differences, all of these Lagerstätten were deposited in settings conducive to phosphatization, indicating that the TOAE fostered exceptional preservation in marine settings around the world. Phosphatization may have been fueled by phosphate delivery from climatically-driven sea level change and continental weathering, with anoxic basins acting as phosphorus traps.


2021 ◽  
Author(s):  
Grégoire Michoud ◽  
David Kamanda Ngugi ◽  
Alan Barozzi ◽  
Giuseppe Merlino ◽  
Maria Ll. Calleja ◽  
...  

AbstractDeep-sea hypersaline anoxic basins are polyextreme environments in the ocean’s interior characterized by the high density of brines that prevents mixing with the overlaying seawater, generating sharp chemoclines and redoxclines up to tens of meters thick that host a high concentration of microbial communities. Yet, a fundamental understanding of how such pycnoclines shape microbial life and the associated biogeochemical processes at a fine scale, remains elusive. Here, we applied high-precision sampling of the brine–seawater transition interface in the Suakin Deep, located at 2770 m in the central Red Sea, to reveal previously undocumented fine-scale community structuring and succession of metabolic groups along a salinity gradient only 1 m thick. Metagenomic profiling at a 10-cm-scale resolution highlighted spatial organization of key metabolic pathways and corresponding microbial functional units, emphasizing the prominent role and significance of salinity and oxygen in shaping their ecology. Nitrogen cycling processes are especially affected by the redoxcline with ammonia oxidation processes being taxa and layers specific, highlighting also the presence of novel microorganisms, such as novel Thaumarchaeota and anammox, adapted to the changing conditions of the chemocline. The findings render the transition zone as a critical niche for nitrogen cycling, with complementary metabolic networks, in turn underscoring the biogeochemical complexity of deep-sea brines.


2020 ◽  
Vol 117 (22) ◽  
pp. 11961-11967 ◽  
Author(s):  
Thomas A. Laakso ◽  
Erik A. Sperling ◽  
David T. Johnston ◽  
Andrew H. Knoll

The Ediacaran Period (635 to 541 Ma) marks the global transition to a more productive biosphere, evidenced by increased availability of food and oxidants, the appearance of macroscopic animals, significant populations of eukaryotic phytoplankton, and the onset of massive phosphorite deposition. We propose this entire suite of changes results from an increase in the size of the deep-water marine phosphorus reservoir, associated with rising sulfate concentrations and increased remineralization of organic P by sulfate-reducing bacteria. Simple mass balance calculations, constrained by modern anoxic basins, suggest that deep-water phosphate concentrations may have increased by an order of magnitude without any increase in the rate of P input from the continents. Strikingly, despite a major shift in phosphorite deposition, a new compilation of the phosphorus content of Neoproterozoic and early Paleozoic shows little secular change in median values, supporting the view that changes in remineralization and not erosional P fluxes were the principal drivers of observed shifts in phosphorite accumulation. The trigger for these changes may have been transient Neoproterozoic weathering events whose biogeochemical consequences were sustained by a set of positive feedbacks, mediated by the oxygen and sulfur cycles, that led to permanent state change in biogeochemical cycling, primary production, and biological diversity by the end of the Ediacaran Period.


Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 91 ◽  
Author(s):  
Stefano Varrella ◽  
Michael Tangherlini ◽  
Cinzia Corinaldesi

Deep-sea hypersaline anoxic basins (DHABs) are considered to be among the most extreme ecosystems on our planet, allowing only the life of polyextremophilic organisms. DHABs’ prokaryotes exhibit extraordinary metabolic capabilities, representing a hot topic for microbiologists and biotechnologists. These are a source of enzymes and new secondary metabolites with valuable applications in different biotechnological fields. Here, we review the current knowledge on prokaryotic diversity in DHABs, highlighting the biotechnological applications of identified taxa and isolated species. The discovery of new species and molecules from these ecosystems is expanding our understanding of life limits and is expected to have a strong impact on biotechnological applications.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lingang Xu ◽  
Anja B. Frank ◽  
Bernd Lehmann ◽  
Jianming Zhu ◽  
Jingwen Mao ◽  
...  

Abstract Earth’s atmosphere experienced a step of profound oxygenation during the Neoproterozoic era, accompanied by diversification of animals. However, during the Cryogenian period (720–635 million years ago) Earth experienced its most severe glaciations which likely impacted marine ecosystems and multicellular life in the oceans. In particular, large volumes of Mn and Fe accumulated during the interglacial intervals of the Cryogenian glaciations, indicating large anoxic marine metal reservoirs. Here we present chromium isotope-, rare earth element-, and redox-sensitive trace element data of sedimentary rocks from the interglacial Datangpo Formation deposited between the Sturtian and Marinoan glaciations in South China, in an attempt to investigate the oxidation state of the oceans and atmosphere. Both the Cr isotope and trace element data indicate mainly anoxic water conditions with cryptic oxic surface water incursions after the Sturtian glaciation. Glacial-fed manganese precipitated as manganese carbonate in anoxic basins, and the non-fractionated δ53Cr record of −0.10 ± 0.06‰ identifies anoxic conditions with a cryptic component of slightly fractionated Cr isotope composition in manganese ore, in line with distinctly fractionated Mo isotope composition. Both the manganese carbonate ore and the black shales exhibit very low redox-sensitive element concentrations. Our study demonstrates that the oxygenation of the seawater, and inferably of the atmosphere, at the beginning of the Cryogenian interglacial interval was much subdued. The post-glacial rebound then allowed the Ediacaran biological diversity.


Diversity ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 113 ◽  
Author(s):  
Barone ◽  
Varrella ◽  
Tangherlini ◽  
Rastelli ◽  
Dell'Anno ◽  
...  

Deep-sea hypersaline anoxic basins (DHABs) are one of the most hostile environments on Earth. Even though DHABs have hypersaline conditions, anoxia and high hydrostatic pressure, they host incredible microbial biodiversity. Among eukaryotes inhabiting these systems, recent studies demonstrated that fungi are a quantitatively relevant component. Here, fungi can benefit from the accumulation of large amounts of organic material. Marine fungi are also known to produce bioactive molecules. In particular, halophilic and halotolerant fungi are a reservoir of enzymes and secondary metabolites with valuable applications in industrial, pharmaceutical, and environmental biotechnology. Here we report that among the fungal taxa identified from the Mediterranean and Red Sea DHABs, halotolerant halophilic species belonging to the genera Aspergillus and Penicillium can be used or screened for enzymes and bioactive molecules. Fungi living in DHABs can extend our knowledge about the limits of life, and the discovery of new species and molecules from these environments can have high biotechnological potential.


2019 ◽  
Vol 35 (1) ◽  
Author(s):  
A. V. Dubinin ◽  
T. P. Demidova ◽  
M. N. Rimskaya-Korsakova ◽  
L. S. Semilova ◽  
O. A. Ocherednik ◽  
...  

2018 ◽  
Vol 115 (26) ◽  
pp. 6596-6601 ◽  
Author(s):  
Theodore R. Them ◽  
Benjamin C. Gill ◽  
Andrew H. Caruthers ◽  
Angela M. Gerhardt ◽  
Darren R. Gröcke ◽  
...  

For this study, we generated thallium (Tl) isotope records from two anoxic basins to track the earliest changes in global bottom water oxygen contents over the Toarcian Oceanic Anoxic Event (T-OAE; ∼183 Ma) of the Early Jurassic. The T-OAE, like other Mesozoic OAEs, has been interpreted as an expansion of marine oxygen depletion based on indirect methods such as organic-rich facies, carbon isotope excursions, and biological turnover. Our Tl isotope data, however, reveal explicit evidence for earlier global marine deoxygenation of ocean water, some 600 ka before the classically defined T-OAE. This antecedent deoxygenation occurs at the Pliensbachian/Toarcian boundary and is coeval with the onset of initial large igneous province (LIP) volcanism and the initiation of a marine mass extinction. Thallium isotopes are also perturbed during the T-OAE interval, as defined by carbon isotopes, reflecting a second deoxygenation event that coincides with the acme of elevated marine mass extinctions and the main phase of LIP volcanism. This suggests that the duration of widespread anoxic bottom waters was at least 1 million years in duration and spanned early to middle Toarcian time. Thus, the Tl data reveal a more nuanced record of marine oxygen depletion and its links to biological change during a period of climatic warming in Earth’s past and highlight the role of oxygen depletion on past biological evolution.


2018 ◽  
Vol 94 (7) ◽  
Author(s):  
Giuseppe Merlino ◽  
Alan Barozzi ◽  
Grégoire Michoud ◽  
David Kamanda Ngugi ◽  
Daniele Daffonchio

Sign in / Sign up

Export Citation Format

Share Document