Visible and near — infrared reflectance of beach sands: A study on the spectral reflectance/ grain size relationship

1977 ◽  
Vol 6 (3) ◽  
pp. 169-182 ◽  
Author(s):  
David J. Leu
2022 ◽  
Vol 14 (2) ◽  
pp. 405
Author(s):  
Kay Wohlfarth ◽  
Christian Wöhler

Telescopic observations of Mercury consistently report systematic variations of the normalized spectral slope of visible-to-near-infrared reflectance spectra. This effect was previously assumed to be a photometric property of the regolith, but it is not yet fully understood. After the MESSENGER mission, detailed global spectral maps of Mercury are available that better constrain Mercury’s photometry. So far, wavelength-dependent seeing has not been considered in the context of telescopic observations of Mercury. This study investigates the effect of wavelength-dependent seeing on systematic variations of Mercury’s normalized spectral reflectance slope. Therefore, we simulate the disk of Mercury for an idealized scenario, as seen by four different telescopic campaigns using the Hapke and the Kaasalainen–Shkuratov photometric model, the MDIS global mosaic, and a simple wavelength-dependent seeing model. The simulation results are compared with the observations of previous telescopic studies. We find that wavelength-dependent seeing affects the normalized spectral slope in several ways. The normalized slopes are enhanced near the limb, decrease toward the rim of the seeing disk, and even become negative. The decrease of the normalized spectral slope is consistent with previous observations. However, previous studies have associated the spectral slope variations with photometric effects that correlate with the emission angle. Our study suggests that wavelength-dependent seeing may cause these systematic variations. The combined reflectance and seeing model can also account for slope variations between different measurement campaigns. We report no qualitative differences between results based on the Hapke model or the Kaasalainen–Shkuratov model.


2021 ◽  
pp. 096703352110075
Author(s):  
Adou Emmanuel Ehounou ◽  
Denis Cornet ◽  
Lucienne Desfontaines ◽  
Carine Marie-Magdeleine ◽  
Erick Maledon ◽  
...  

Despite the importance of yam ( Dioscorea spp.) tuber quality traits, and more precisely texture attributes, high-throughput screening methods for varietal selection are still lacking. This study sets out to define the profile of good quality pounded yam and provide screening tools based on predictive models using near infrared reflectance spectroscopy. Seventy-four out of 216 studied samples proved to be moldable, i.e. suitable for pounded yam. While samples with low dry matter (<25%), high sugar (>4%) and high protein (>6%) contents, low hardness (<5 N), high springiness (>0.5) and high cohesiveness (>0.5) grouped mostly non-moldable genotypes, the opposite was not true. This outline definition of a desirable chemotype may allow breeders to choose screening thresholds to support their choice. Moreover, traditional near infrared reflectance spectroscopy quantitative prediction models provided good prediction for chemical aspects (R2 > 0.85 for dry matter, starch, protein and sugar content), but not for texture attributes (R2 < 0.58). Conversely, convolutional neural network classification models enabled good qualitative prediction for all texture parameters but hardness (i.e. an accuracy of 80, 95, 100 and 55%, respectively, for moldability, cohesiveness, springiness and hardness). This study demonstrated the usefulness of near infrared reflectance spectroscopy as a high-throughput way of phenotyping pounded yam quality. Altogether, these results allow for an efficient screening toolbox for quality traits in yams.


2021 ◽  
Author(s):  
Changku Kang ◽  
Sehyeok Im ◽  
Won Young Lee ◽  
Yunji Choi ◽  
Devi Stuart‐Fox ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 521
Author(s):  
Juan Carlos Rendón-Angeles ◽  
Zully Matamoros-Veloza ◽  
Jose Luis Rodríguez-Galicia ◽  
Gimyeong Seong ◽  
Kazumichi Yanagisawa ◽  
...  

One-pot hydrothermal preparation of Ca3Cr2Si3O12 uvarovite nanoparticles under alkaline conditions was investigated for the first time. The experimental parameters selected for the study considered the concentration of the KOH solvent solution (0.01 to 5.0 M), the agitation of the autoclave (50 rpm), and the nominal content of Si4+ (2.2–3.0 mole). Fine uvarovite particles were synthesised at 200 °C after a 3 h interval in a highly concentrated 5.0 M KOH solution. The crystallisation of single-phase Ca3Cr2Si3O12 particles proceeded free of by-products via a one-pot process involving a single-step reaction. KOH solutions below 2.5 M and water hindered the crystallisation of the Ca3Cr2Si3O12 particles. The hydrothermal treatments carried out with stirring (50 rpm) and non-stirring triggered the crystallisation of irregular anhedral particles with average sizes of 8.05 and 12.25 nm, respectively. These particles spontaneously assembled into popcorn-shaped agglomerates with sizes varying from 66 to 156 nm. All the powders prepared by the present method exhibited CIE-L*a*b* values that correspond to the Victoria green colour spectral space and have a high near infrared reflectance property. The particle size and structural crystallinity are factors affecting the Victoria pigment optical properties, such as CIE-L*a*b* values, green tonality, and near-infrared reflectance.


Sign in / Sign up

Export Citation Format

Share Document