Plate tectonics and pelagic facies: Late Jurassic to Early Cretaceous deep-sea sediments of the Ybbsitz ophiolite unit (Eastern Alps, Austria)

1990 ◽  
Vol 67 (1-2) ◽  
pp. 85-99 ◽  
Author(s):  
Kurt Decker
2016 ◽  
Vol 47 (1) ◽  
pp. 184
Author(s):  
G. Kostaki ◽  
A. Kilias ◽  
H. J. Gawlick ◽  
F. Schlagintweit

The Late Jurassic to Early Cretaceous sedimentary succession of the Neochorouda Unit lies unconformably on top of the Oreokastro ophiolites of the Vardar/Axios “suture zone” in northern Greece. This succession consists of turbidites and mass flows and provides an upper limit for ophiolite emplacement. New biostratigraphic and microfacies analysis from the clasts in the mass flows were carried out for a better understanding of the Late Jurassic to Early Cretaceous geodynamic history. Microfacies and organism content prove the onset of Late Jurassic carbonate platforms on top of a Middle to Late Jurassic nappe stack striking from the Eastern Alps to the Hellenides. Middle to Late Jurassic nappe stacking towards WNW to NW followed late Early to Middle Jurassic intra-oceanic thrusting in the Western Vardar/Axios (= Neotethys) Ocean and subsequent ophiolite obduction onto the Pelagonian Units forming a thin-skinned orogen on the lower plate. After ophiolite emplacement Kimmeridgian- Tithonian carbonate platforms sealed widespread this tectonic event. Tithonian extension due to mountain uplift resulted in partial erosion of these platforms and new extensional basins were formed. Late Tithonian to earliest Cretaceous erosion of the uplifted nappe stack including the obducted ophiolites resulted in sediment supply into the newly formed basins also east of the Pelagonian Units.


2018 ◽  
Author(s):  
James G. Ogg ◽  
◽  
Chunju Huang ◽  
Chunju Huang ◽  
Linda A. Hinnov ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 196
Author(s):  
Jiangbo Ren ◽  
Yan Liu ◽  
Fenlian Wang ◽  
Gaowen He ◽  
Xiguang Deng ◽  
...  

Deep-sea sediments with high contents of rare-earth elements and yttrium (REY) are expected to serve as a potential resource for REY, which have recently been proved to be mainly contributed by phosphate component. Studies have shown that the carriers of REY in deep-sea sediments include aluminosilicate, Fe-Mn oxyhydroxides, and phosphate components. The ∑REY of the phosphate component is 1–2 orders of magnitude higher than those of the other two carriers, expressed as ∑REY = 0.001 × [Al2O3] − 0.002 × [MnO] + 0.056 × [P2O5] − 32. The sediment P2O5 content of 1.5% explains 89.1% of the total variance of the sediment ∑REY content. According to global data, P has a stronger positive correlation with ∑REY compared with Mn, Fe, Al, etc.; 45.5% of samples have a P2O5 content of less than 0.25%, and ∑REY of not higher than 400 ppm. The ∑REY of the phosphate component reaches n × 104 ppm, much higher than that of marine phosphorites and lower than that of REY-phosphate minerals, which are called REY-rich phosphates in this study. The results of microscopic observation and separation by grain size indicate that the REY-rich phosphate component is mainly composed of bioapatite. When ∑REY > 2000 ppm, the average CaO/P2O5 ratio of the samples is 1.55, indicating that the phosphate composition is between carbonate fluoroapatite and hydroxyfluorapatite. According to a knowledge map of sediment elements, the phosphate component is mainly composed of P, Ca, Sr, REY, Sc, U, and Th, and its chemical composition is relatively stable. The phosphate component has a negative Ce anomaly and positive Y anomaly, and a REY pattern similar to that of marine phosphorites and seawater. After the early diagenesis process (biogeochemistry, adsorption, desorption, transformation, and migration), the REY enrichment in the phosphate component is completed near the seawater/sediment interface. In the process of REY enrichment, the precipitation and enrichment of P is critical. According to current research progress, the REY enrichment is the result of comprehensive factors, including low sedimentation rate, high ∑REY of the bottom seawater, a non-carbonate depositional environment, oxidation conditions, and certain bottom current conditions.


2009 ◽  
Vol 146 (4) ◽  
pp. 602-616 ◽  
Author(s):  
F. KNOLL ◽  
J. I. RUIZ-OMEÑACA

AbstractThe theropod teeth from the Berriasian (Early Cretaceous) site of Anoual (N Morocco) are described. The assemblage is important in that it comes from one of the very few dinosaur sites of this age globally and the only one for the whole of Gondwana. The theropod teeth from Anoual are morphologically diverse. Most of the material possibly belongs to the clade Dromaeosauridae, which would be an early occurrence for this taxon. The palaeogeographic position of Anoual enables it to provide data on the dispersal events that affected terrestrial faunas during Mesozoic times. A Laurasian influence is evidenced by the presence of Velociraptorinae and, on the whole, the theropod fauna from Anoual provides support for the existence of a trans-Tethyan passage allowing terrestrial faunal interchanges during Late Jurassic and/or earliest Cretaceous times. Additionally, Anoual records the existence of diminutive theropods. However, it cannot yet be determined whether the small size of the specimens is genetic or ontogenetic.


Author(s):  
Dingquan Wang ◽  
Jianxin Wang ◽  
Runying Zeng ◽  
Jie Wu ◽  
Shijia V. Michael ◽  
...  
Keyword(s):  
Deep Sea ◽  

2021 ◽  
pp. 100067
Author(s):  
Panchala Weerakoon ◽  
Harinam Joshi ◽  
Neha Aggarwal ◽  
Neerja Jha ◽  
Hetti Arachchige Hemachandra Jayasena ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document